in the development and testing phase.
The individuals identified in the NN module pass
to the Response to Intervention (RTI) pyramidal
module which consists of three layers of evidence-
based interventions for promoting the social,
emotional, and behavioral development of children.
Each layer uses fuzzy logic to assign degrees of
learning difficulty to the individuals and determine
the most appropriate computational intervention for
each layer of the RTI model. Each layer of the RTI
model will consist of a set of computational
intervention methodologies (e.g., games) activated
by the degree of difficulty for each individual.
The proposed approach can be used innovatively
as a support tool for the diagnosis of dyslexia and
other learning difficulties. Further details and
detailed descriptions can be found at our previous
work (Macário Costa et al., 2014).
ACKNOWLEDGEMENTS
The authors R.J.M. Costa and R. Mousinho thank
the team of the ELO Project (Department of Speech
Pathology, and Faculty of Medicine at UFRJ) and
the Delindo Couto Neurology Institute of UFRJ and
USAL. J. Zavaleta thanks CAPES for the financial
support received. S.M.S. Cruz thanks CNPq,
CYTED (Programa Iberoamericano De Ciencia Y
Tecnologia Para El Desarrollo - grant P514RT0013),
FAPERJ (grants E-26/112.588/2012 and E-
26/110.928/2013), MEC/SeSU and PET-SI/UFRRJ
for the financial support of the research.
REFERENCES
Abbott, A. (2013) “Neuroscience: Solving the brain”, In:
Nature 499, pages. 272–274.
Berman JJ, (2009) “Principles of Big Data: Preparing,
Sharing, and Analyzing Complex Information”
Morgan Kaufmann; 1st Edition.
Ciccarese, P., Soiland-Reyes, S., Belhajjame, K., Gray,
A.J.G, Goble, C., Clark, T. (2013) “PAV ontology:
provenance, authoring and versioning”, Journal of
Biomedical Semantics 2013, 4:37.
Chen J. H., Zhong, N. (2013) “Toward the Data-Brain
driven systematic brain data analysis”. IEEE
Transactions on Systems, Man, and Cybernetics:
Systems, 43(1), pages. 222-228.
Chen J. H., Zhong, N., Liang, P. P. (2012) “Data-Brain
driven systematic human brain data analysis: A case
study in numerical inductive reasoning centric
investigation” Cognitive Systems Research, Elsevier,
vol. 15-16, pages. 17-32.
Cruz, S.M.S, Campos, M. L M., Mattoso, M. (2009)
“Towards a Taxonomy of Provenance in Scientific
Workflow Management Systems”. SERVICES I 2009:
259-266.
Cruz, S.M.S, Campos, M. L M., Mattoso, M. (2012) “A
Foundational Ontology to Support Scientific
Experiments”. ONTOBRAS-MOST 2012: 144-155.
Davison, A.P. (2010) “Challenges and solutions in
replicability and provenance tracking for simulation
projects”. BMC Neuroscience 2010, 11(Suppl 1):P76.
Deelman E, Gannon D, Shields M, Taylor I (2009)
“Workflows and e-Science: An overview of workflow
system features and capabilities”, Future Generation
Computer Systems 25(5):528–540.
Giraud A.L., Ramus, F. (2013) “Neurogenetics and
auditory processing in developmental dyslexia”. Curr.
Opin. Neurobiol. 23:37–42.
HBP (2014) “Human Brain Project”.
https://www.humanbrainproject.eu/
Hey, T., Tansley, S., Tolle, K (2009) “The Fourth
Paradigm: Data-Intensive Scientific Discovery”
Microsoft Press. 1st Edition.
Kubilius, J. (2013) “A framework for streamlining
research workflow in neuroscience and psychology”.
Front. Neuroinform. 7: 52.
Lent, R. (2001) “Cem Bilhões de Neurônios – Conceitos
Fundamentais de Neurociência”. SP. Ed. Atheneu.
Macário Costa, R. J., Pará, T. S., Caloba, L. P., Carvalho,
L. A. V. (2007) “Classificação de pacientes com
transtorno de dislexia usando redes neurais artificiais”.
In: XXX CNMAC, Florianópolis.
Macário Costa, R. J., Mousinho, R., Carvalho, L. A. V.
(2008) “Redes Neuronais: um instrumento no rastreio
(screening) de pessoas com risco de transtorno
específico de leitura”. In: I Congresso Ibro/Larc de
Neurociências da América Latina, Caribe e Península
Ibérica, 2008, Búzios, RJ.
Macário Costa, R. J., Mousinho, R., Vidal, L. A. (2009)
“Abordagem Computacional no Screening da Dislexia
e do TDAH”. In: XXXII CNMAC, Cuiabá.
Macário Costa, R. J., Cruz, S. M. S., Vidal, L. A.,
Mousinho, R, Tosta, F. O. (2009) “Redes neuronais e
transtornos de aprendizagem: rastreio de pessoas com
dislexia”. In: SBIE. v. 20. p. 1-10. Florianopólis.
Macário Costa, R. J., Mousinho, R.; Vidal, L. A. (2009)
“Dislexia e Inteligência Computacional: Um sistema
para rastrear (Screening) pessoas com sinais de
transtorno de leitura”. In: 2o. Congresso Internacional
de Dislexia, São Paulo.
Macário Costa, R. J. (2011) “Uma Estratégia
computacional na detecção da dislexia”. Rio de
Janeiro: Tese – UFRJ/COPPE.
Macário Costa, R. J. Cruz, S. M. S., Zavaleta, J, Carvalho,
L. A. V.; Mousinho, Renata (2011) “Abordagem
tecnológica para rastreio de pessoas com dislexia”.
Tecer (Belo Horizonte), v. 4, p. 41-53.
Macário Costa, R. J., Zavaleta, J., Cruz, S. M. S., Cerceau,
R., Mousinho, R., Carvalho, L. A. V. (2013) “A
Computational Approach for Screening Dyslexia”. In:
CBMS 2013, 2013, Porto. 26
th
IEEE International
CSEDU2015-7thInternationalConferenceonComputerSupportedEducation
440