the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), CVPR ’12, pages 2911–
2918, Washington, DC, USA. IEEE Computer Soci-
ety.
Berrani, S.-A., Amsaleg, L., and Gros, P. (2002). Recherche
par similarit´e dans les bases de donn´ees multidimen-
sionnelles : panorama des techniques d’indexation.
RSTI., pages 9–44.
Claveau, V., Tavenard, R., and Amsaleg, L. (2010). Vec-
torisation des processus d’appariement document-
requˆete. In CORIA, pages 313–324.
Daniilidis, K., Maragos, P., and Paragios, N., editors (2010).
ECCV’10: Proceedings of the 11th European Confer-
ence on Computer Vision Conference on Computer Vi-
sion: Part III, Berlin, Heidelberg. Springer-Verlag.
Douze, M., J´egou, H., Sandhawalia, H., Amsaleg, L., and
Schmid, C. (2009). Evaluation of gist descriptors
for web-scale image search. In Proceedings of the
ACM International Conference on Image and Video
Retrieval, CIVR ’09, pages 19:1–19:8, New York, NY,
USA. ACM.
Ilbeygi, M. and Shah-Hosseini, H. (2012). A novel fuzzy
facial expression recognition system based on facial
feature extraction from color face images. Eng. Appl.
Artif. Intell., pages 130–146.
Ionescu, B., Popescu, A., Lupu, M., Gˆınsca, A., and M¨uller,
H. (2014). Retrieving diverse social images at me-
diaeval 2014: Challenge, dataset and evaluation. In
Working Notes Proceedings of the MediaEval 2014
Workshop, Barcelona, Catalunya, Spain, October 16-
17, 2014.
Joachims, T. (1997). A probabilistic analysis of the rocchio
algorithm with tfidf for text categorization. In Pro-
ceedings of the Fourteenth International Conference
on Machine Learning, ICML ’97, pages 143–151, San
Francisco, CA, USA.
Karamti, H. (2013). Vectorisation du mod`ele d’appariement
pour la recherche d’images par le contenu. In CORIA,
pages 335–340.
Karamti, H., Tmar, M., and BenAmmar, A. (2012). A new
relevance feedback approach for multimedia retrieval.
In IKE, July 16-19, Las Vegas Nevada, USA, page 129.
Karamti, H., Tmar, M., and Gargouri, F. (2014). Vector-
ization of content-based image retrieval process using
neural network. In ICEIS 2014 - Proceedings of the
16th International Conference on Enterprise Informa-
tion Systems, Volume 2, Lisbon, Portugal, 27-30 April,
2014, pages 435–439.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. Int. J. Comput. Vision, 60(2):91–
110.
Mitra, M., Singhal, A., and Buckley, C. (1998). Improving
automatic query expansion. In Proceedings of the 21st
Annual International ACM SIGIR Conference on Re-
search and Development in Information Retrieval, SI-
GIR ’98, pages 206–214, New York, NY, USA. ACM.
Philbin, J., Chum, O., Isard, M., Sivic, J., and Zisserman, A.
(2007). Object retrieval with large vocabularies and
fast spatial matching. In CVPR.
pierre Braquelaire, J. and Brun, L. (1997). Comparison and
optimization of methods of color image quantization.
IEEE TRANS. ON IMAGE PROCESSING, 6:1048–
1051.
Rahman, M. M., Antani, S. K., and Thoma, G. R. (2011).
A query expansion framework in image retrieval do-
main based on local and global analysis. Inf. Process.
Manage., 47(5):676–691.
Rivero-Moreno, C. and Bres, S. (2003). Les filtres de Her-
mite et de Gabor donnent-ils des mod´eles ´equivalents
du syst´eme visuel humain? In ORASIS, pages 423–
432.
Rui, Y., Huang, T. S., Ortega, M., and Mehrotra, S. (1998).
Relevance feedback: A power tool for interactive
content-based image retrieval.
Salton, G. (1971). The SMART Retrieval Sys-
tem—Experiments in Automatic Document
Processing. Prentice-Hall, Inc., Upper Saddle River,
NJ, USA.
Squire, D. M., M¨uller, H., and M¨uller, W. (1999). Im-
proving response time by search pruning in a content-
based image retrieval system, using inverted file tech-
niques. In Proceedings of the IEEE Workshop on
Content-Based Access of Image and Video Libraries,
CBAIVL ’99, pages 45–, Washington, DC, USA.
IEEE Computer Society.
Swets, D. L. and Weng, J. (1999). Hierarchical discriminant
analysis for image retrieval. IEEETrans. Pattern Anal.
Mach. Intell., 21:386–401.
Tomasev, N. and Mladenic, D. (2013). Image hub explorer:
Evaluating representations and metrics for content-
based image retrieval and object recognition. In Bloc-
keel, H., Kersting, K., Nijssen, S., and Zelezn, F., edi-
tors, ECML/PKDD (3), volume 8190, pages 637–640.
Springer.
Wang, X., Fang, H., and Zhai, C. (2008). A study of meth-
ods for negative relevance feedback. In Proceedings
of the 31st Annual International ACM SIGIR Con-
ference on Research and Development in Information
Retrieval, SIGIR ’08, pages 219–226, New York, NY,
USA. ACM.
Winder, S. A. J., Hua, G., and Brown, M. (2009). Pick-
ing the best DAISY. In 2009 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion (CVPR 2009), 20-25 June 2009, Miami, Florida,
USA, pages 178–185.
Yan, R., Hauptmann, A. G., and Jin, R. (2003). Negative
pseudo-relevance feedback in content-based video
retrieval. In In Proceedings of ACM Multimedia
(MM2003, pages 343–346.
WEBIST2015-11thInternationalConferenceonWebInformationSystemsandTechnologies
292