data mining and learning analytics: An issue brief. US
Department of Education, Office of Educational
Technology, 1-57.
Boud, D., and Falchikov, N. (2006). Aligning assessment
with longterm learning. Assessment & Evaluation in
Higher Education, 31(4), 399-413. doi:
10.1080/02602930600679050.
Buckingham Shum, S., and Deakin Crick, R. (2012).
Learning dispositions and transferable competencies:
pedagogy, modelling and learning analytics. Paper
presented at the 2nd International Conference on
Learning Analytics & Knowledge, Vancouver, British
Columbia.
Buckingham Shum, S., and Ferguson, R. (2012). Social
Learning Analytics. Journal of Educational
Technology & Society, 15(3). doi:
10.1145/2330601.2330616.
Clow, D. (2013). An overview of learning analytics.
Teaching in Higher Education, 18(6), 683-695. doi:
10.1080/13562517.2013.827653.
Greller, W., and Drachsler, H. (2012). Translating
Learning into Numbers: A Generic Framework for
Learning Analytics. Journal of Educational
Technology & Society, 15(3).
Hommes, J., Rienties, B., de Grave, W., Bos, G.,
Schuwirth, L., and Scherpbier, A. (2012). Visualising
the invisible: a network approach to reveal the
informal social side of student learning. Advances in
Health Sciences Education, 17(5), 743-757. doi:
10.1007/s10459-012-9349-0.
Järvelä, S., Hurme, T., and Järvenoja, H. (2011). Self-
regulation and motivation in computer-supported
collaborative learning environments. In S. Ludvigson,
A. Lund, I. Rasmussen and R. Säljö (Eds.), Learning
across sites: new tools, infrastructure and practices
(pp. 330-345). New York, NY: Routledge.
Lajoie, S. P., and Azevedo, R. (2006). Teaching and
learning in technology-rich environments. In P.
Alexander and P. Winne (Eds.), Handbook of
educational psychology (2 ed., pp. 803-821). Mahwah,
NJ: Erlbaum.
Lehmann, T., Hähnlein, I., and Ifenthaler, D. (2014).
Cognitive, metacognitive and motivational
perspectives on preflection in self-regulated online
learning. Computers in Human Behavior, 32, 313-323.
doi: 10.1016/j.chb.2013.07.051.
Macfadyen, L. P., and Dawson, S. (2010). Mining LMS
data to develop an “early warning system” for
educators: A proof of concept. Computers &
Education, 54(2), 588-599. doi:
10.1016/j.compedu.2009.09.008.
Marks, R. B., Sibley, S. D., and Arbaugh, J. B. (2005). A
Structural Equation Model of Predictors for Effective
Online Learning. Journal of Management Education,
29(4), 531-563. doi: 10.1177/1052562904271199.
Martin, A. J. (2007). Examining a multidimensional model
of student motivation and engagement using a
construct validation approach. British Journal of
Educational Psychology, 77(2), 413-440. doi:
10.1348/000709906X118036.
Narciss, S. (2008). Feedback strategies for interactive
learning tasks. In J. M. Spector, M. D. Merrill, J. J. G.
van Merrienboer and M. P. Driscoll (Eds.), Handbook
of Research on Educational Communications and
Technology (3 ed., pp. 125-144). Mahaw, NJ:
Lawrence Erlbaum Associates.
Narciss, S., and Huth, K. (2006). Fostering achievement
and motivation with bug-related tutoring feedback in a
computer-based training for written subtraction.
Learning and Instruction, 16(4), 310-322. doi:
10.1016/j.learninstruc.2006.07.003.
Nistor, N., Baltes, B., Dascălu, M., Mihăilă, D., Smeaton,
G., and Trăuşan-Matu, Ş. (2014). Participation in
virtual academic communities of practice under the
influence of technology acceptance and community
factors. A learning analytics application. Computers in
Human Behavior, 34, 339-344. doi:
10.1016/j.chb.2013.10.051.
Oblinger, D. G. (2012). Let's Talk... Analytics.
EDUCAUSE Review, 47(4), 10-13.
Pekrun, R., Goetz, T., Frenzel, A. C., Barchfeld, P., and
Perry, R. P. (2011). Measuring emotions in students’
learning and performance: The Achievement Emotions
Questionnaire (AEQ). Contemporary Educational
Psychology, 36(1), 36-48. doi:
10.1016/j.cedpsych.2010.10.002.
Richardson, J. T. E. (2012). The attainment of White and
ethnic minority students in distance education.
Assessment & Evaluation in Higher Education, 37(4),
393-408. doi: 10.1080/02602938.2010.534767.
Rienties, B., and Alden Rivers, B. (2014). Measuring and
Understanding Learner Emotions: Evidence and
Prospects. Learning Analytics Review 1, Learning
Analytics Community Exchange (LACE).
http://www.laceproject.eu/learning-analytics-
review/measuring-and-understanding-learner-
emotions/
Rienties, B., Cross, S., and Zdrahal, Z. (2015).
"Implementing a Learning Analytics Intervention and
Evaluation Framework: what works?" In B.
Motidyang and R. Butson (Eds.): Big data and
learning analytics in higher education. Springer,
Berlin.
Rienties, B., Tempelaar, D. T., Giesbers, B., Segers, M.,
and Gijselaers, W. H. (2012). A dynamic analysis of
social interaction in Computer Mediated
Communication; a preference for autonomous
learning. Interactive Learning Environments,
22(5),
631-648. doi: 10.1080/10494820.2012.707127.
Rienties, B., Tempelaar, D. T., Van den Bossche, P.,
Gijselaers, W. H., and Segers, M. (2009). The role of
academic motivation in Computer-Supported
Collaborative Learning. Computers in Human
Behavior, 25(6), 1195-1206. doi:
10.1016/j.chb.2009.05.012.
Schmidt, H. G., Van Der Molen, H. T., Te Winkel, W. W.
R., and Wijnen, W. H. F. W. (2009). Constructivist,
Problem-Based Learning does work: A meta-analysis
of curricular comparisons involving a single medical
StabilityandSensitivityofLearningAnalyticsbasedPredictionModels
165