
A Visualization Tool for Scenario-based Software Development

Eiji Shiota and Atsushi Ohnishi
Department of Computer Science, Ritsumeikan University, Kusatsu, Japan

Keywords: Scenario Retrieval, Differential Scnenario, Scenario-based Requirements Elicitation.

Abstract: In a scenario-based software development, a lot of scenarios should be described in order to clarify the whole
behaviors of the target software. By reusing scenarios of similar software systems, it becomes more efficient
to newly describe scenarios of the target software. A differential scenario includes the difference between
sequences of events of the two scenarios and the difference between nouns in the scenarios. If the nouns of the
two scenarios are commonly used in the two scenarios, we regard the two scenarios specify the same or similar
system. If the sequences of the events of the two scenarios are corresponding each other, we regard behavior
of the two scenarios are similar. In this paper, we derive differential information including different words
and events from two scenarios. Then, we propose a method of scenario retrieval using differential information
between two scenarios. This method enables to detect similar scenarios for a given scenario. The proposed
method and a prototype system for creating and visualizing differential scenario and a retrieval system will be
illustrated with examples.

1 INTRODUCTION

Scenarios are important in software development
(Cockburn, 2001), particularly in requirements en-
gineering by providing concrete system description
(Sutcliffe et al., 1998; Weidenhaupt et al., 1998).
Especially, scenarios are useful in defining system
behaviors by system developers and validating the
requirements by customers (Alexander et al., 2004;
Mavin et al., 2003). In scenario-based software de-
velopment, incorrect scenarios will have a negative
impact on the overall system development process.

Scenarios can be classified into (1) normal scenar-
ios, (2) alternative scenarios, and (3) exceptional sce-
narios. A normal one represents the normal and typi-
cal behavior of the target system, while an alternative
one represents normal but alternative behavior of the
system and an exceptional one represents abnormal
behavior of the system. There are many normal sce-
narios for a certain system. For example, a normal
scenario represents withdrawal of a banking system,
another normal scenario represents money deposit, a
third one represents wire transfer, and so on. Each
normal scenario has several alternative scenarios and
exceptional scenarios. In order to grasp all behaviors
of the system, not only normal scenarios, but also al-
ternative/ exceptional scenarios should be specified.
However, it is difficult to hit upon alternative scenar-

ios and exceptional scenarios, whereas it is easy to
think of normal scenarios. In order to improve the
productivity of scenario-based software development,
reusing of scenario is a key to solve the above prob-
lem.

This paper focuses on retrieval of scenarios in or-
der to improve the reusability of scenarios. For exam-
ple, suppose a new development of a train ticket reser-
vation system. In case of scenario-based develop-
ment, several normal scenarios, such as reservation,
cancellation, modification and so on should be spec-
ified. Furthermore, alternative scenarios and excep-
tional scenarios should be specified. In such a case, if
scenarios of similar system, such as flight ticket reser-
vation are reusable and if developers can easily gener-
ate new scenarios of the new system, the productivity
will be improved.

If we can detect existing scenarios whose behav-
iors are similar with a scenario of a system to be de-
veloped, we may reuse the detected scenarios. Sup-
pose a new train ticket reservation system. If we find
scenarios of similar system, such as bus ticket reser-
vation, we may use them.

Retrieval with keywords is an easy way, however,
it is difficult to search for full-text scenarios. One of
the reasons of the difficulties is the difference of ab-
straction levels of scenarios. Suppose a scenario of
purchasing a train ticket. One scenario may consist of

293Shiota E. and Ohnishi A..
A Visualization Tool for Scenario-based Software Development.
DOI: 10.5220/0005504702930300
In Proceedings of the 10th International Conference on Software Engineering and Applications (ICSOFT-EA-2015), pages 293-300
ISBN: 978-989-758-114-4
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

just one event of buying a train ticket. Another sce-
nario may consist of several events, such as 1) inform-
ing date, destination, and the number of passengers,
class of cars, 2) retrieving train data base, 3) issuing
a ticket, 4) charging ticket fee to a credit card, and so
on. If the abstraction levels of scenarios are different,
it is quite difficult to correctly retrieve scenarios.

SCEL language for writing scenarios solves this
problem, because SCEL provides a limited actions
and their case structure as described in Section 2.3
and scenarios with SCEL keep a certain abstraction
level of actions.

2 SCENARIO LANGUAGE

2.1 Outline

The SCEL language has already been introduced
(Zhang et al., 2004). In this paper, a brief descrip-
tion of this language will be given for convenience.
A scenario can be regarded as a sequence of events.
Events are behaviors employed by users or the sys-
tem for accomplishing their goals. We assume that
each event has just one verb, and that each verb has
its own case structure (Fillmore, 1968). The scenario
language has been developed based on this concept.
Verbs and their own case structures depend on prob-
lem domains, but the roles of cases are independent
of problem domains. The roles include agent, object,
recipient, instrument, source, etc. (Fillmore, 1968;
Ohnishi, 1996). Verbs and their case structures are
provided in a dictionary of verbs. If a scenario de-
scriber needs to use a new verb, he can use it by
adding the verb and its case structure in the dictio-
nary.

We adopt a requirements frame in which verbs and
their own case structures are specified. The require-
ments frame depends on problem domains. Each ac-
tion has its case structure, and each event can be au-
tomatically transformed into internal representation
based on the frame. In the transformation, concrete
words will be assigned to pronouns and omitted in-
dispensable cases. With Requirements Frame, we can
detect both the lack of cases and the illegal usage of
noun types (Ohnishi, 1996). Our scenario language
defines the semantic of verbs with their case structure.
For example, data flow verb has source, goal, agent,
and instrument cases.

2.2 Scenario Example

Figure 1 shows a scenario of reservation of a hotel
room written with our scenario language, SCEL. A

[Title: Reservation of a hotel room]
[Viewpoints: user, reservation system]
1.A user enters his membership number and his
name to the reservation system.
2.The system validates the user with the mem-
bership number and the name.
3.The user enters retrieval information to the
system.
4.The system retrieves available hotels from the
database using the information.
5.The system shows available hotels to the user.
6.The user selects a hotel from the available ho-
tels.
7. The system shows the room rate to the user.
8.The user enters the credit card number to the
system.
9.The system asks the status of the card to a
credit card company using the card number.
10.The system shows the reservation number to
the user.

Figure 1: Scenario example.

title of the scenario is given at the first line of the sce-
nario in Figure 1. Viewpoints of the scenario are spec-
ified at the second line. In this paper, viewpoints mean
active objects such as human, system appearing in the
scenario. There exist two viewpoints, namely “user”
and “reservation system.” The order of the specified
viewpoints means the priority of the viewpoints. In
this example, the first prior object is “user,” and the
second is “reservation system.” In such a case, the
prior object becomes a subject of an event.

In this scenario, all of the events are sequential.
Actually, event number is for reader’s convenience
and not necessary.

Each event is automatically transformed into in-
ternal representation. The details of transformation
mechanism is in (Ohnishi, 1996). For example, the
1st event “A user enters his membership number and
his name to the reservation system” can be trans-
formed into internal representation shown in Table
1. In this event, the verb “enter” corresponds to the
concept “data flow.” The data flow concept has its
own case structure with four cases, namely to say,
source case, goal case, object case and instrument
case. Sender corresponds to the source case and re-
ceiver corresponds to the goal case. Data transferred
from source case to goal case corresponds to the ob-
ject case. Device for sending data corresponds to the
instrument case. In this event, “membership number
and name” correspond to the object case and “user”
corresponds to the source case.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

294

Table 1: Internal representation of the 1st event.

Concept: Data Flow
source goal object instrument
user reservation membership *NOT

system no. and name specified*

3 DIFFERENTIAL SCENARIO

Systems that are designed for a similar purpose (e.g.
reservation, shopping, authentication, etc.) often have
similar behaviors. Besides, if such systems belong
to the same domain, actors and data resemble each
other. In other words, normal scenarios of a similar
purpose belonging to the same domain resemble each
other. Since our scenario language provides limited
vocabulary and limited grammar, the abstraction level
of any scenarios becomes almost the same.

For one system, there exist several normal scenar-
ios. In the case of ticket reservation, reservation can
be written as a normal scenario and cancellation can
be written as another normal scenario. For a certain
normal scenario, there are several exceptional scenar-
ios and alternative scenarios. To make a differential
scenario, we select two normal scenarios of two dif-
ferent systems. Each of the two scenarios should rep-
resent almost the same purpose, such as reservation of
some item.

The differential scenario consists of (1) a list of
not corresponding words, (2) a list of not correspond-
ing events, that is, deleted events which appear in one
scenario (say, scenario A) and do not appear in the
other (say, scenario B) and added events which do not
appear in scenario A and appear in scenario B. We
also provide (3) a list of corresponding words and (4)
a list of corresponding events, and (5) a script to ap-
ply the above differential information for generating
scenarios.

We generally assume that one to one correspon-
dence between two nouns and one to one correspon-
dence between two events. Figure 2 shows a scenario
of reservation of meeting room for residents in a city.

We compare the scenario of Figure 1 with the sce-
nario of Figure 2 from top to bottom. First, we check
the actors specified as viewpoints of the two scenar-
ios. In the case of scenarios of Figure 1 and 2, “user”
in Figure 1 corresponds to “citizen” in Figure 2 and
“reservation system” in Figure 1 corresponds to “sys-
tem” in Figure 2. The correspondence should be con-
firmed by user.

Second, we check the action concepts of events.
If there exist events whose action concept appears
once in scenario A and B, respectively, we assume
that these two events are probably corresponding to

[Title: Reservation of a meeting room]
[Viewpoints: citizen, system]
1. A citizen enters reservation information to the
system.
2. The system retrieves available room from the
database using the information.
3. The system shows an available room to the
citizen.
4. The citizen enters his name and telephone
number to the system.
5. The system validates the citizen with the
name and the telephone number.
6. The system shows the room rate to the citi-
zen.
7. The citizen pays the rate to the system.
8. The system issues a receipt to the citizen.
9. The system shows the room number to the
citizen.

Figure 2: Normal scenario of reservation of a meeting room.

each other. For example, the concept of the 2nd event
in Figure 1 and the concept of the 5th event in Figure
2 are “validate” and there are no more events whose
concepts are “validate,” so we regard these two events
are probably corresponding to each other. Then we
provide these two events to a user and the user will
confirm that these two events are corresponding to
each other by checking whether nouns of the same
cases are corresponding or not.

If there exists an event whose action concept ap-
pears once in scenario A, but there exists two or more
events of the action concept in scenario B, then we
regard that one of the events of the concept in sce-
nario B corresponds to the event in scenario A. So,
we provide these events to system user and the user
will check the corresponding events.

If there are two or more events whose concepts are
same in two scenarios respectively, these events are
candidates of corresponding events. Then we check
that nouns of the same cases are corresponding to.
Next we provide candidates to the user and he will
select the corresponding event.

The first four events of the scenario in Figure 1
can be transformed as shown in Table 2. The internal
representations of the first five events of the scenario
in Figure 2 are shown in Table 3. In fact, the data
flow concept has four cases, that is, source, goal, ob-
ject, and instrument cases as shown in Table 1, but the
instrument cases are omitted in Table 2 and 3 for the
space limitation.

For the 2nd event in Table 2 and the 5th event in
Table 3 as shown with italic font, since the nouns of
the cases of the two events are same or corresponding
to each other, these two events are corresponding to

A�Visualization�Tool�for�Scenario-based�Software�Development

295

Table 2: The internal representation of the first four events
of the scenario in Figure 1.

concept agent/ goal object
source

data flow user reservation membership
system no. and name

validate system user membership
no. and name

data flow user reservation retrieval
system information

retrieve system available hotels database

Table 3: The internal representation of the first five events
of the scenario in Figure 2.

concept agent/ goal object
source

data flow citizen system reservation
information

retrieve system available database
room

data flow system citizen available rooms
data flow citizen system name and

telephone no.
validate system citizen name and

telephone no.

each other. At this time we get “membership num-
ber and name” correspond to “name and telephone
number.” So, the 1st event in Figure 1 corresponds to
the 4th event in Figure 2, because concepts are same
and all of the nouns of corresponding cases are corre-
sponding to each other.

Similarly we detect corresponding events and cor-
responding nouns. Table 4 shows a list of correspond-
ing nouns. Figure 3 shows corresponding events of
the two scenarios. In Figure 3, two events connected
by an arrow are corresponding to each other. Events
without an arrow have no corresponding events. The
successive corresponding events are grouped into an
event block. The first two events in Figure 1 are
grouped into a block named a1. The block a1 cor-
responds to a block named b2 consisting of the 4th
and the 5th events in Figure 2.

Figure 3: Corresponding events.

Table 4: A list of corresponding words between scenario A
and scenario B.

Nouns in scenario A Nouns in scenario B
user citizen
reservation system system
membership num. and namename and telephone no.
available hotels available room
retrieval information reservation information
reservation number room number
hotel room meeting room
hotels room

Table 5: Deleted events from perspective scenario A/ Added
events from perspective scenario B.

concept agent/ goal object
source

select user hotel available hotels
data flow user system credit card number
data flow system credit card credit card number

company

Table 6: Added events from perspective scenario A/ deleted
events from perspective scenario B.

concept agent/ goal object
source

pay citizen system room rate
data flow system citizen receipt

Finally, we can get the differential scenario be-
tween hotel reservation and meeting room reserva-
tion shown in Table 4, 5, and 6 and Figure 3. Ta-
ble 5 shows events that appear in scenario A, but do
not appear in scenario B. Table 6 shows events that
do not appear in scenario A, but appear in scenario
B. Figure 4 shows a script to make a new alterna-
tive/exceptional scenario of scenario B by applying
to an alternative/exceptional scenario of scenario A.

1) change positions of block a1 and a2
2) delete events in Table 5
3) insert events in Table 6 followed by a4
4) change the corresponding nouns in Table 4

Figure 4: Script applied to alternative/exceptional scenarios
of scenario A.

4 SCENARIO RETRIEVAL USING
DIFFERENTIAL SCENARIO

In scenario-based software development, several sce-
narios should be specified. Since such scenarios may
be revised, there exist a lot of scenarios of different
revisions. When a scenario is given, it may be dif-
ficult to find similar scenarios or related scenarios to

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

296

the given scenario by hand. We propose a retrieval
method in order to get similar scenarios or related sce-
narios using the similar information of scenarios.

We assume that scenarios are analyzed based
on the requirements frame in advance. As previ-
ously mentioned in Section 2, the requirements frame
strongly depends on the problem domain. So, if case
structures of verbs are different between two scenar-
ios, we consider that these two scenarios are belong-
ing to different domains each other. If all of the case
structures are same, these scenarios can be classified
into the same domain.

We propose two factors of the similarity between
scenarios. One is related to same system. For ex-
ample, a banking system provides several functions,
withdrawal, deposit, loan, opening account, and so
on. These functions are different each other, but both
active objects, such as customer, bank clerk, ATM,
banking system and inactive objects, such as bank
card, cash, account in common appear in scenarios
specifying behaviors of these functions of the banking
system. The other factor is related to same or similar
behavior. For example, behavior of train seat reser-
vation and that of flight reservation are similar each
other, although these systems are different.

4.1 Similarity of Scenarios by System

If same nouns are used in scenarios, these scenarios
probably specify behaviors of the same system. For
example, “library id,” “e-library system,” and “librar-
ian” appear in different scenarios, these scenarios can
be regarded as scenarios of the same system. On the
basis of the above discussion, we give an equation in
order to measure the similarity of system of scenarios
as below.

Similarity of system between the two scenarios =

the no.o f same nouns in events o f thetwo scenarios
thetotal no.o f nouns in events o f thetwo scenarios

(1)

As for scenarios in Figure 1 and 2, nouns in the
events of these scenarios are shown in Table 7.

The total number of the nouns is 19 and the same
nouns are “database”, “name” and “room rate.” So
the similarity of system between these two scenarios
becomes3

19.

4.2 Similarity of Scenarios by Behavior

If scenario titles have a same verb, these scenario
probably specify similar behaviors. For example, a
scenario whose title is “a customer reserves a train

Table 7: Nouns in the events of Figure 1 and Figure 2.

Scenario nouns
Fig.1 available hotel(s), credit card company,

(credit) card number, database,
membership number, name, (retrieval)
information, reservation number,
(reservation) system, room rate,
status of the card, user

Fig.2 available room, citizen, database, name,
receipt, (reservation) information,
room number, (room) rate,
system, telephone number

seat” and another scenario whose title is “a user re-
serves a flight ticket” can be classified into similar
scenarios from a behavioral viewpoint. However, a
scenario whose title is “a customer purchases a train
ticket” can be classified into similar scenarios with
above ones. So, we think that scenarios are similar if
titles of the scenarios have same verb, but this is not
necessary.

Sequence of events in a scenario represents be-
haviors of users and system. If systems are differ-
ent from each other, nouns in events become differ-
ent, even if events specify similar behaviors. So, we
use corresponding events in the differential scenario.
If two scenarios are similar each other from the per-
spective of behavior, the ratio of corresponding events
becomes high.

On the basis of the above discussions, we give the
second equation in order to measure the similarity of
behaviors of scenarios as shown in below.

Similarity of behavior between the two scenarios =

the number o f corresponding events
thetotal number o f events o f thetwo scenarios

(2)

As shown in Figure 3, the total number of events
is 10+9− 7= 12 and the number of the same events
is 7. So, the similarity of behavior between scenarios
of Figure 1 and 2 is7

12 = 0.58 We consider that two
scenarios whose similarity of behavior is greater than
0.5 are scenarios of similar behaviors.

In order to apply the differential information to
another scenario of reservation of a hotel room, we
also provide a script for application script shown in
Figure 4. Even if there exists a delete command in
a script, event blocks will not be deleted when any
event blocks in an applied scenario do not match with
event blocks in the script. Even if there exists an in-
sertion command in the script, event blocks will not
be inserted when the following event block and the
followed event block are missing in the applied sce-
nario.

A�Visualization�Tool�for�Scenario-based�Software�Development

297

4.3 Scenario Categorization

We map classified scenarios as shown in Figure 5. In
Figure 5, there exist two axes. The horizontal axis
means the similarity of behaviors, while the vertical
axis means the similarity of systems. Scenarios of
same vertical level are scenarios of similar behaviors
and scenarios of same horizontal level are scenarios of
same system. Overlapped scenarios mean that these
scenarios have similar behaviors and belong to same
system. The three scenarios of the left-side are cat-
egorized into scenarios of similar behavior, that is,
reservation. Scenario of modifying flight ticket and
its exceptional scenario are piled up, since these two
scenarios belong to same system and have similar be-
haviors.

System

Reservation of

flight ticket

(standard

scenario)

Reservation of

train ticket

Modify flight ticket

Modify flight ticket

(exceptional scenario)

Reservation of

long distance

bus ticket

Borrowing CDs

Return borrowed CD

Borrowing books

Behavior

Figure 5: Retrieval result.

5 VISUALIZATION TOOL

We have been developing a prototype system based
on the proposed method with Java on an Eclipse 3.6
Helios. This system is three man-month product and
the number of source code line is about 3,000. Figure
6 shows the outline of the visualization of differential
scenario. A user specifies a normal scenario of a new
system. Our tool generates differential scenarios be-
tween the specified scenario and each scenario stored
in a scenario database. If there exist 100 scenarios in
the scenario database, 100 differential scenarios will
be generated. Out tool can visualize each differential
scenario. Another tool named scenario retriever gen-
erates scenario map with two axes, that is, the similar-
ity of behavior and the similarity of system. With this
map, the user can find similar scenarios to the speci-
fied scenario.

Figure 7 shows a differential scenario between a
scenario of reserving a flight ticket and a scenario
of reserving a train ticket. The same colored events
of the two scenarios are corresponding to each other.
There exist four corresponding blocks between the

Scenario
Database

Generator/Visualizer of

Differential Scenario

user

Scenario
Retriever

Scenario A

Retrieval result of
Scenarios

Differential scenario

between A and scenario in DB

Corresponding
words and events,
added/deleted events,
script

Reservation of

a hotel room

Reservation of

a meeting room

Event 1

Event 2

Event 3

Event 4

Event 5

Event 6

Event 7

Event 8

Event 9

Event 10

Event 1

Event 2

Event 3

Event 4

Event 5

Event 6

Event 7

Event 8

Event 9

b1

b2

b3

b4

a1

a2

a3

a4
deleted and added events

Visualized
Differential
Scenario

Figure 6: Outline of Scenario Visualization.

Flight ticket reservation Train ticket reservation

Table of corresponding nouns
The number of nouns

The ratio of corresponding nouns

The ratio of common nouns

Figure 7: Visualized Differential Scenario between flight
ticket reservation and train ticket reservation.

two scnearios. In the lower area of this figure, a ta-
ble of the number of nouns in the two scenarios and a
table of corresponding nous between the two scenar-
ios are shown.

Figure 8 shows a scenario similarity map. A nor-
mal scenario of flight ticket reservation is located
in the origin (left and bottom.) The horizontal axis
means the similarity of system, while the vertical axis
means the similarity of behavior. Similar scenarios to
the flight ticket reservation in terms of system are dis-
played in the lower and bottom area. Similar scenar-
ios in terms of behavior are displayed in the left area.
With this map user can easily find similar scenarios
to the specified scenario. For readers’ convenience,
the authors translated some Japanese messages of this
map into English.

6 EXPERIMENT

To evaluate our method, we compare the classifi-
cation of scenarios by hands with the classification

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

298

Figure 8: Visualized Scenario Retrieval Result.

Table 8: The scenario classification by proposed method
and by students.

Scenario by authors (same by stu-
as by method) dents

Train ticket reservation Different system, 11/13
via internet similar behavior

Flight ticket changing Same system, 11/13
different behavior

Flight ticket changing 2 Same system 11/13
different behavior

Train ticket reservation Different System, 11/13
similar behavior

Flight ticket reservation Same system, 13/13
similar behavior

Bus ticket reservation Different System, 10/13
similar behavior

Claim for the loss Different problem 13/13
on insurance domain

Goods purchasing Different problem 12/13
domain

by the method. Thirteen graduate students at Com-
puter Science department who well know both the
scenario language and the problem domain classify
eight scenarios for a standard scenario, while the same
scenarios are also classified based on the proposed
method. The scenario of reservation of flight ticket
was adopted as a standard scenario in this experiment.
Table 8 shows the comparison of the scenario classi-
fications.

In this experiment, nine scenarios are classified in
advance by the authors. The results by the authors are
regarded as correct classifications. The classification
results by our method are much the same as the re-
sult by the authors. This fact means our method can
correctly classifyscenarios. The values of the column
“result by students” mean the ratio of correct classi-

fication by the students. We investigated the reason
why some students wrongly classified and found that
they did not recognize the difference of systems cor-
rectly. After giving additional explanation of systems,
the students adopted same classification of scenarios
as classified by the proposed method.

Through the experiment, we found that differen-
tial scenario is useful to classify scenarios.

7 RELATED WORK

There is an obvious trend to define scenarios as tex-
tual description of the designed system behaviors.
The growing number of practitioners demanding for
more “informality” in the requirements engineering
process seems to confirm this trend. Most of these
papers describe how to use scenarios for the elicita-
tion (Sutcliffe et al., 1998) or exploration (Leite et al.,
1997) of requirements. The authors believe that it is
also important to support both the generation and the
classification of scenarios.

Brian Chance et al. give scenario types for the
classification (Chance et al., 1999). However they do
not propose how to classify given scenarios. Our ap-
proach for retrieving scenarios gives how to retrieve
similar scenarios with a given scenario.

Colette Roland et al. give a classification frame-
work of scenarios in CREWS project (Rolland et al.,
1996). They classify scenarios from four viewpoints.
These are contents, purpose, form and lifecycle. They
can define the content of a whole scenario. We define
contents of a scenario the sequence of actions spec-
ified in events and can derive contents of a part of a
scenario. In this sense, we can detect similarities be-
tween fragments of two different scenarios.

Zhang Wei-ha et al. propose a classification
method of scenarios, but their method depends on
hazard scenarios and classified into five types in ac-
cordance with the complexity (Zhang et al., 2008).
Gerrit Lahrmann et al. propose a classification
method of scenarios, but their method depends on in-
formation logistics scenarios based on three types and
4 factors (Lahrmann et al., 2009). Our method clas-
sifies more general scenarios and enables to retrieve
similar scenarios.

Martin Glinz proposes a very lightweight require-
ments modeling language (Glinz, 2010). With this
language relations among objects including human,
system and data can be visualized. The purpose of vi-
sualizing is modeling requirements at an early stage.
In (Fill et al., 2013), a meta modeling platform named
ADOxx is proposed. This platform provides the vi-
sual representation of modeling methods from the

A�Visualization�Tool�for�Scenario-based�Software�Development

299

area of requirements engineering. The purposes are
both meta modeling and modeling a software. In
case of our method, the purpose of visualizing is to
improve the understandability of differential scenario
and retrieval result of similar scenarios.

In authors’ previous works, generation methods of
exceptional scenarios and alternative scenarios with a
normal scenario have been established. By retrieving
a similar normal scenario using our proposed method
and by applying the generation methods, we can eas-
ily get alternative/exceptional scenarios (Makino et
al., 2012).

8 CONCLUSION AND FUTURE
WORK

We have developed a frame base scenario language
and a method of generating and visualizing differ-
ential scenario between two scenarios. We have es-
tablished a retrieval method of similar scenarios with
system/behavior for a given scenario using the differ-
ential scenario and a generation method of alterna-
tive/exceptional scenarios for a given scenario using
the differential scenario. We have also developed vi-
sualization tools of differential scenario and retreival
result of similar scenarios. The effectiveness of the
differential scenarios is validated through the experi-
ment.

In order to retrieve more efficiently similar sce-
narios with differential scenario, using pre-conditions
and post-conditions just like the selection of rules
applicable to verify the correctness of scenarios
(Toyama et al., 2005) is left as our future work.

REFERENCES

Alexander, I. and Maiden, N. A. M. Scenarios, Stories, Use
Cases, Through the Systems Development Life-Cycle.
John Wiley & Sons, Ltd., 2004, pp.161-177.

Chance, B. D. and Belhart, B. E., A Taxonomy for Scenario
Use in Requirements Elicitation and Analysis of Soft-
ware Systems.Proc. IEEE ECBS’99, 1999, pp.232-
238.

Cockburn, A., Writing Effective Use Cases.Addison-
Wesley, USA, 2001

Fill, H. G. and Karagiannis, D., On the Conceptualisa-
tion of Modelling Methods Using the ADOxx Meta
Modelling Platform. International Journal of Enter-
prise Modelling and Information Systems Architec-
tures, Vol.8, No.1, 2013, pp.4-25.

Fillmore, C. J., The Case for Case, in Universals in Lin-
guistic Theory.Holt, Rinehart and Winston, 1968.

Glinz, M., Very Lightweight Requirements Modeling.
Proc. 18th RE10, pp.385-386, 2010.

Lahrmann, G. and Stroh, F., Towards a Classification of In-
formation Logistics Scenarios - An Exploratory Anal-
ysis. Proc. IEEE 42nd Hawaii International Confer-
ence on System Sciences, 2009, pp.1-10.

Leite, J. C. S. P. et.al., Enhancing a Requirements Baseline
with Scenarios.Proc. 3rd RE, 1997, pp.44-53.

Makino M. and A. Ohnishi, A., Scenario Generation Using
Differentail Acenario Information.IEICE Trans. Inf.
& Syst., Vol.E95-D, No.4, 2012, pp.1044-1051.

Mavin A. and Maiden, N. A. M., Determining socio-
technical systems requirements, experiences with gen-
erating and walking through scenarios.Proc. 11th
IEEE RE, 2003, pp.213-222.

Ohnishi, A., Software Requirements Specification Database
on Requirements Frame Model.Proc. IEEE 2nd
ICRE, 1996, pp.221-228.

Rolland, C. et al. A Proposal for a Scenario Classification
Framework.CREWS Report 96-01, 1996.

Sutcliffe, A. G. and Ryan, M., Experience with SCRAM, a
SCenario Requirements Analysis Method.Proc. 3rd
ICRE, 1998, pp.164-171.

Toyama, T. and Ohnishi, A., Rule-based Verification of Sce-
narios with Pre-conditions and Post-conditions.Proc.
13th IEEE RE2005, 2005, pp.319-328.

Weidenhaupt, K. et al., Scenarios in System Development,
Current Practice.IEEE Software, March, 1998, pp.34-
45.

Zhang, H. and Ohnishi, A., Transformation between Sce-
narios from Different Viewpoints.IEICE Trans. Inf,
& Syst., Vol.E87-D, No.4, 2004, pp.801-810.

Zhang, W. et al.: Classification of Hazard Scenario and
SDG Qualitative Identification Method.Proc. the 7th
ICSC2008, 2008, pp.1223-1227.

ICSOFT-EA�2015�-�10th�International�Conference�on�Software�Engineering�and�Applications

300

