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Abstract: This paper presents a method for designing residual generators using minimum-order functional observers to
detect actuator and component faults in time-delay systems. Existence conditions of the residual generators
and functional observers are first derived, and then based on a parametric approach to the solution of a gener-
alized Sylvester matrix equation, we develop systematic procedures for designing minimum-order functional
observers to detect faults in the system. The advantages of having minimum-order observers are obvious from
the economical and practical points of view as cost saving and simplicity can be achieved, particularly when
dealing with high-order complex systems. Extensive numerical examples are given to illustrate the proposed
fault detection scheme. In all the numerical examples, we design minimum-order residual generators and
functional observers to detect faults in the system.

1 INTRODUCTION common approach, which is used for fault detection,
is observer-based strategy. The basic idea behind the
Time-delay systems are commonly encountered in observer-based approach is to estimate the state and
various engineering complex systems. As cited in the output of the system from the measurements by
(Duan and Patton, 2002; Fu et al., 2004; Wu and using some types of state observers, and then con-
Duan, 2007) time delays appear in practical processesstruct a residual by a properly weighted output esti-
such as aviation industries, chemical processes, longmation error. The residual is then examined for the
transmission lines and rolling mill systems. In fact, likelihood of faults (Duan and Patton, 1998; Duan and
when time delays appear in high complex systems, Patton, 2001; Huong et al., 2014).
they can cause the systems to be more vulnerable In this paper, the work on reduced-order func-
to unexpected faults. Faults can enter the systemstional observers for dynamical systems (Darouach
via input or state delay. Normally, faults can cause et al., 1999; Darouach, 2001; Trinh and Ha, 2007;
malfunctions of the system operations such as partly Fernando et al., 2010; Trinh et al., 2004; Trinh and
break down or even whole system shutdown (Teh Fernando, 2012; Fernando and Trinh, 2013) and (Fer-
and Trinh, 2013; Chen and Patton, 2012). Hence, nando and Trinh, 2014) are used to design a simple
the problems of fault detection have been extensively and effective scheme to detect faults for time-delay
considered over the last several decades to improvesystems. We construct residual generators based on
reliability and safety of system performance. the system outputs and minimume-order functional ob-
Accounting from the last several decades, there is servers to trigger faults occurring in the systems. The
a wide range of approaches which are based on thesalient feature of our work is that the order of our de-
foundation of mathematics to build models in orderto signed residual generators and observers is very low
detect system faults. One of the theories is applying and hence our fault detection scheme is very practical
Kalman filter method to generate a residual based onand easy to implement. In the next section, we present
the difference between the ideal output and real out- system description and problem statement. This is
put of the system, this method can be seen in (Wangthen followed by preliminaries results and our pro-
et al., 2006; Zhong et al., 2003). Another trend in this posed fault detection scheme for time-delay systems.
field is using geometric approach which can be seen Finally, three examples in Numerical Examples sec-
in (Meskin and Khorasani, 2009). Meanwhile, a very tion to illustrate the proposed theory can be seen.
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2 SYSTEM DESCRIPTION AND 3 PRELIMINARIESRESULTS
PROBLEM STATEMENT

Obviously, the reduced-order functional observers

We consider the following time-delay system and the residual generator can detect faults in systems
(1) if all the unknown parameters satisfy the following
X(t) = AX(t) + Agx(t — T) + Bu(t) conditions in Theorem 1.
+Ef(t), t=0, (1)  Theorem 1. Under faultless conditionsw(t) is an
y(t) = Cx(t), asymptotic estimate of (¥ and residual genera-
X(t)=q@t), te[-1,0), tor r(t) function as(4) for any initial condition

. N i o(t),x(0),w(0) and any (t) if and only if
where T is a positive real number presenting the

known time delay in the state(t) € R", u(t) € R™ N is Hurwitz (5)
andy(t) € RP are the state, input and output vector, NL+GC— LA =0, (6)
respectively. Unpredictable fault signafét) ¢ R' GyC—LAG =0 7
enter from the system inputh € R™", Aq € R™", d S

B € R™M, C e RP*" andE € R™! are known con- H-LB=0, (8)
stant matrices. We assume that the gairC) is ob- TL+FC=0. 9)

servable, ranfC) = p, ranKE) =I. Furthermore, the - . o
faults f(t) are assumed to be linear independent to  Under fault conditions, residual(t) satisfies(4)
avoid vagueness situations which may appear whenif and only if all the parameters satisfy the conditions
some faults occur simultaneously. Hence, the resid- (5)-(9) and
ual generator may not detect faults because of zero LE #0. (10)
overall effects of faults. ; )

Let us introduce a functional observext) of a  Proof. Let us define an error vecte(t) € R which
generabi-order, 1< q < n. Here w(t) is an estimation - is the difference between the estimaig) and the

of a functionLx(t), L € R%", where functionLx(t) as follows

@(t) = Na(t) + Gy(t) + Ggy(t — 1) et) = w(t) —Lx(t), t>-T. (11)

+Hu(t), t>0, (2) It follows from (1), (2) and (11), we obtain
t)=0(t te[-1,0

wt) =0, tel-t0), &(t) = Neft) + (NL+ GC— LA)x(t)
w(t) € RY, N € R¥9, G € R¥P, Gy € R%P and + (G4C — LAG)X(t — 1) (12)
H € R™M are constant observer parameters which H— LBu(t) — LE f(t t>_
will be determined such thai(t) is an asymptotic es- * Ju® ®, tz-t
timation of the functioriLx(t) when there is no fault Sufficiencyin the case of faultless conditions, i.e.,
appearing in the system, i.e.(t) = 0. Matrix L will f(t) = 0, if conditions (6)-(8) are satisfied then equa-
be determined for the purpose of fault detection. tion (12) is reduced t@(t) = Net). As a result, if

Let us consider a residual generat(@r) which is condition (5) is satisfied then the errg(t) asymptot-
used to trigger faults in system (1) whenever the faults ically tends to zero. Hence, the reduced-order func-
appear, i.e.f(t) #0, tional observet(t) is an estimation of the functional

(1) = To(t) + Fy(t), 3) Lx(t) as expected. Furthermore, by (1), (3) and (11),

residualr (t) can be expressed as follows
whereT € R4 andF € R¥*P are constant matrices

which will be detemined to satisfy the residual func- r(t) =Te(t) + (TL+FOX(). (13)
tion such that It is clear that under no fault condition, the error
0if f(t)=0 e(t) is expected to asymptotically tends to zero, thus
tIi%rr‘]or(t) = defined iff (t) £ 0 (4) the residual is proposed to be zero and it happens if
¢ or undefined iff (t) # 0, condition (9) holds.

Necessity:Under no fault conditions, if condition
(5) is unsatisfied then even conditions (6)-(8) hold, the
errore(t) 4 0 with any initial condition ofe(t) and
x(0). Contrarily, if one of the conditions (6)-(8) is not
satisfied then even (5) holds, it is possible to fud)
to makee(t) 4 O.

wherec # 0, andf(t) = 0 implies a faultless condi-
tion, f(t) # 0 implies a faulty condition (Trinh et al.,
2013).
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Under fault conditions, if conditions (5)-(9) hold,
by (12) and (13), the residual is then governed by the
following equations

e(t) = Ne(t) — LE f(t),
r(t) = Te(t).
It follows from (14),r(t) can detect faultg (t) if

condition (10) is satisfied. This completes the proof
of Theorem 1. O

(14)

The design of the functional observers and the
residual generator is now reduced to finding matrices
L, N, G, Gg, H, T andF which satisfy Theorem 1.

4 FAULT DETECTION SCHEMES

This section is to determine the possible order of the

observer and the necessary parameters for designingg g1 case1:
reduced-order functional observers and residual gen-

Substitute equations (15)-(19) into (20)-(22), we
obtain

LiAni+L2A21—NL; = G, (23)
LiAg11+L2Ag21 = Gy, (24)
F+TL1 = 0, (25)
LiAgi2+L2Ag2 = O, (27)

TL, = 0. (28)

It is clear from equations (23), (24) and (25) that
matricesG, Gq andF are computed when matrices
N, L3, Lo, andT are found. Consequently, the de-
sign of the observers and residual generator is now
reduced to determine matricdk L,, L, andT such
that three conditions (26)-(28) are satisfied and con-
dition (5) holds.

2n
p>=

erator to detect faults in system (1). Note that, based In this case, we consider the design of only first-order

on the conditions in Theorem 1, whenever matrix
is found, matrixH is determined from (8) and con-
dition (10) is checked. Moreover, other unknown pa-
rameters are solutions of equations (6), (7), (9) and
condition (5) holds. In order to simplify the three ma-
trix equations (6), (7) and (9), we employ the partition
method introduced in (Trinh and Fernando, 2012).
Let P € R™" be defined by

P=[C" C!], (15)
whereC* € R™P is the Moore-Penrose inverse of
matrixC, CC™ = I, andC+ € R™"P is an orthog-
onal basis for the null space of mati@& CC- = 0.
ThenP is an invertible matrix (see, (Trinh and Fer-

nando, 2012)).
Now we define the following partitions

cP=1[p 0], (16)

LP=[L1 Lo, (17)
“1ap_ |[A11 A2

P AP_{A21 AZJ, (18)
—1 _ |Ad1r Adr2

P AP = |:Ad21 Ad22]’ (19)

where submatricels; € R%P, L, € R*(=P) Aq; €
RPXP Ajp € RPX(-P) Ay € RVPIXP Asy €
RM=P)X(=P) Ayrq € RPP, Agro € RPX-P) Ao €
R(—p)xp andAqos € R(M—p)x(n—p),

Post-multiply both sides of equations (6), (7) and
(9) by matrixP, we have following equations

NLP+GCP—LPP AP = 0, (20)
G4CP—LPP AP = 0, (21)
TLP+FCP 0. (22)
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functional observers and residual generators to detect
faults in the systems (1). We show that indeed it
is possible provided that the number of outputs
satisfyingp > % and that condition (10) is satisfied.

Theorem 2. If p > % first-order observers and
residual generators always exist to detect faults in the
system if the conditioflL0) is satisfied.

Proof. To design a first-order functional observer,
i.e.,q=1, N € R™! can be chosen to be any neg-
ative real number, i.e.,

N=ss<0. (29)

Note thats < 0 ensures the satisfaction of the con-
dition (5), i.e.,N is Hurwitz. By lettingL, = 0, equa-
tion (26) and (27) are reduced to

L1As2 0, (30)
LiAgz = O (31)

We can express (30) and (31) as
L1 [A12 Adiz] =0. (32)

Sincep > 4!, [A12  Adg12] € RP*2"=P)is a col-
umn matrix, i.e.p > 2(n— p), thus a solution to (32)
wherel; # 0 always exists. Lef\(X) be a matrix
of row basis vectors for the row-nullspaceXf i.e.,
A(X)X = 0. The solution td.1 # 0 according to (32)
exists whem\((X) # 0. Therefore, solutions fa;
can be computed by first findirlg according to

L1=N[A12 Adiz, (33)
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and then choosing any row bf asL;.
In (28) and sincé.» = 0, T # 0 can be arbitrarily

chosen to be any scalar, saywherea # 0. Finally,
if the condition (10) LE # 0, is satisfied, wherk =

Ly O } P~lis obtained according to (17), matrices
H, G, Gq andF can then be obtained from (8), (23),
(24) and (25), respectively. This completes the proof
of Theorem 2. O

The effectiveness and the simplicity of this

scheme can be seen in Example 1 of the Numeri-

cal Examples section, in which a system with- 4,
p=3, m=1andl =1 is taken under considera-
tion. For this system, according to Theorem 2, we

only need to design first-order observer and residual

generator to detect faults in the system.

) 2
402 Case2 1<p<F

In this case, first-order functional observers do not ex-
ist and we have to consider observers of higher or-

der. We present a solution to the three matrix equa-

tions (26)-(28) with the requirement thisit has pre-

scribed distinct eigenvalues. For completeness, let us

first present a parametric solution (Duan, 1993) to the
generalized Sylvester matrix equation (26).

Let N € R9*9 with q distinct eigenvalues be de-
fined as follows

N=QAQ, (34)

whereQ € R%9 is any freely chosen invertible ma-
trix, A = diag(s1,%,....S), § # §j for i # j and
Re(s) <Oforalli=1,2,...,0.

With N as defined in (34)L; and L, satisfy-
ing (26) are given in the following parametric forms
(Duan, 1993)

Li=Q[U(s)br U(s)bz ... U(sq)bg]  (35)
Lo=Q[Z(s)br Z(s2)be Z(sq)bg] ' (36)

whereb; € CP(i=1,2,...,q) are free parameters satis-
fying by = bj if 5 = sj, Sj denotes the complex conju-
gate ofs. MatricesU (s) € RP*P andz(s) ¢ R("-P)*P
are coprime polynomial matrices satisfying the fol-
lowing coprime factorization

(Sh-p—Agp) "Af =Z(sU (). (37)

The reader can refer to (Duan, 1993) for a numer-
ically reliable algorithm to comput&(s) andU(s).
Also, as suggested in (Trinh and Fernando, 2012),
U (s) andZ(s) can be conveniently computed accord-
ing to the following equations

U (S) = det(slnfp — IA\ZZ)ID7
Z(s) = adj(sh-p—Ag)Al,,

(38)
(39)

wheredet(.) andadj(.) denote the determinant and
the adjugate matrix of matrix.), respectively. For
any givenAy», the characteristic polynomial can be
obtained as follows

a(s) £ det(Sh-_p— Az)
=" P g Pt
+as P2 tanp, (40)
where the coefficients;,i = 1,2,...,(n— p), are real
constants.

The adjugate matrixdj(.) is then obtained as fol-
lows

adj(Sh-p—AJy) = Y18 P14 Yog' P2
Y3 P 3 L+ Yo, (41)
whereY;,i=1,2,...,n— p,are computed by using the
coefficients ofa(s) and matrixAy, as given below
Yl = |n—pa
Y2 = Y1AJ,+ailn-p,

Y3 = YzAgz +azln_p, (42)

Yn-p= Yn—p—lAérZ—F an—p-1ln—p.
Theorem 3. A functional observer always exists with
g-order where q is the lowest order that matrix M (M
is defined in equatio(d5)) has row basis vectors for
the row-nullspace of MA\_(M) # 0. Furthermore, the
proposed residual generat@8) can detect the faults
in systems if conditio(lL0) holds.

Proof. Now, by substitutd_; andL, from (35) and
(36) into the transpose of (27) and (28), we obtain

|:Ad12:|—r [U(Sl)bl U(s2)b2 U (sq)bq Q'
Agzz| |Z(s1)br  Z(s2)b2 Z(sq)bq
— 0, (43)
[ Z(s)br Z(s2)bz Z(sq)bg ] (QT)"
— 0. (44)

Since Q is an invertible matrix, let(QT)" =
t1 t tq], i #0,i=1,2,...,q, are arbitrarily
chosen real numbers. It follows (43) and (44), we ob-
tain

MB =0, (45)
whereM € R(@+D(—p)xpd g ¢ RPI*1 and
Ay 0 0
0 Az 0
M = : ’
0 0 Aq
Z(sth Z()t Z(sq)tq
A=Al (S) +AdZ(s),i =1,2,...,4,
B=[b] b; by]".
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Let A{(M) be a matrix of row basis vectors for the -5 0 1 2 1
row-nullspace oM, i.e., MA((M) = 0. Therefore, the A 1 -1 0 -2 B_ -2
solutions for3 £ 0 in (45) exists jfff?\((M) #0, andB - O 0 -3 -1 /|~ 4 |
can be selected as any columrfpivhere -2 2 0 -2 -1

A 0 -1 0 0 1
B:N(M)- (46) 0 0 0 -1 -1
= E =
This completes the proof of Theorem 3. O Ad 0 10 -2} 2
1 00 -1 -3

Remark 1:For the cas§ <p< % if M is arow

matrix, AL(M) # O always exists, thus implies Now, the design of a first-order functional ob-

server and residual generator can be readily carried
n—p out.
> . 47
g [Zp’”} (47) SinceC is already in the desired form, i.eC,=
This leads to a method for searching for the or- [ I3 0 |, soPis an identity matrix, i.e P = 4. Ac-
derq, we only need to search for the lowestwhich ~ cording to the partitions (18) and (19), submatrices

satisfies Theorem 3, in the range of Aa1, A1z, Ao1, Aoz, Adia, Adi2, Ad21 andAgpo are ob-
tained, where

2<q< 55 +1]. (48) A —
Remark 2:For the case X p < 2, M in (45) is ﬂ’& - 1 -1 0| -2 :
. : . A1 | Ax 0 0 -3 -1
always a column matrix, thus its row basis vectors for L — 5 o
the row-nullspacep (M) # 0, exists ifM is not a full |

rank matrix, that implies ) 0 —-10 O
Adi1 |As2 | | O 0 0]-1
rankM) < qp. (49) A | Adz | |0 1 0]-2
) 1 0 0]-1

Based on Remark 2-order can be selected as the
smallest order tha#l satisfies condition (49).

It is concluded that since matric@sis arbitrarily
chosen, matricels;, L, andN are determined through
this section, the parametetis G, Gq andF are calcu-
lated based on equations (8), (23), (24) and (25), re-
spectively. MatrixL is then achieved from the equa-
tion (17), we can check if condition (10) holds, i.e.,
LE # 0. Thus, all the conditions in the Theorem 1
are satisfied and the design of the reduced-order func- Li=[ —0.5571 —0.7428 03714 ].
tional observers and the first-order residual generator
to detect the faults in system (1) is completed. Ex-
amples 2 and 3 in the Numerical Examples section
illustrate the theory of this section. L= [ —0.5571 —-0.7428 Q3714 O] )

It is clear that[A12 Aqi2] is @ column matrix
and thus its matrix of row basis vectors for the row-
nullspace exists, i.eA [A12  Ag12| #0. As aresult,

a first-order functional observer exists.

For the design of first-order observer and first-
order residual generator, let us assigja- —3 andL;
is computed according to (33), we obtain

Sincel, = 0 and according to (17), matrix is
obtained as

With L as obtained above, condition (10) is found
to be satisfied since

LE = 0.9285+ 0.

Hence, a first-order residual generator exists and
can be constructed to detect faults in the system. By
choosingT = —5, matriceH, G, G4 andF are ob-

5 NUMERICAL EXAMPLES

Example 1:In this example, we take consideration
of timely fault detection in a time-delay system with
n=4,p=3,m=1,and = 1. Since we have the case
wherep > % and as .dISCUSSG.d in Case 1 of Section 4, tained according to equations (8), (23), (24) and (25),
we only need to design a residual generator based Onrespectively where

first-order observer to detect the faults in the system. '

For this exampleC = [ I3 0 |, A A, BandE are H = 2414Q

as given below G = [ 03714 -1.4856 —0.5571],
Gy = [0 09285 0],
F = [ -27854 —37139 18570].
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Figure 1 shows that the residual generator can ef-
fectively detect the faultg (t) in the system. Fault
f(t) appears at timeé = 20s and clears front =
30s. During the time the fault happens, the resid-
ual generator triggers the fault, when there are no

faults, the residual generator converges to zero as ex-

pected. Note also that the residual is insensitive to
the inputu(t) as expected. It is clear in this exam-
ple that, a significantly lower order (only first-order)
residual generator is designed using a first-order func-
tional observer. In contrast, existing fault detection
schemes using full-order or reduced-order state ob-
servers would give higher order schemes.

Example 2: This example is given to demonstrate
Case 2 (Section 4), whee< p < % . Let us con-
sider a system which h&= [I3 0] and matrices,

A4, B andE given as

1 0 0 1 -2 1 0
0 5 3 4 0 0o 1

A=| 1 1 -8 3 o0/|B=|1 -1/,
4 0 2 -6 0 0 0
0.0 .0 1 -1 0o 1
0O 0 2 -1 0 1 3
0 -1 0 1 O W g

As=| 0 0 -1 3 O0|.E=|2 =-2|.
1 0 1 -2 0 -3 2

o 1 0 0 -3 2 -3

Thus, for this example, we have=5,p=3,m=
2 andl = 2. Since’—z1 <p< % this falls into the Case
2 (Section 4) and therefore we can carry out the design

delay Systems using Minimum-order Functional Observers

30

T L T
—Fault f(t)
=== Residual () []
Input u(t)

25

-10

15 . . . . .
0 25 30 35 40 45
Time(sec)

Figure 1. Residual generator using first-order observer ef-
fectively triggers fault in the system.

5 10 15 20 50

The pair of coprime polynomial matriceKs) and
Z(s) are then calculated based on (38) and (39)

U(s) = (S 4 7s+6)l3,
Z(s) = (Yis+ Y2)AL,.
As in Theorem 3 and Remark 1, now we search

for the lowest possible ordeyof the observersy(t).
It follows equation (48) we have

2<q<3

For the case thaf= 2, let us assign the poles Nf
to be ats; = —3,5 = —5 and choos€ to beQ = I,
andTQ=[1 1]

From (45), matrixM and the matrix of row basis

of a reduced-order observer and a residual generatokectors for the row-nullspace M are obtained

to detect faults in the system.

SinceC = [I3 0], thusP =I5 and according
to (18) and (19), sub-matrice8;1,A12,A21, Ag2,
Ad11,Ad12, Ad21 andAgo» are obtained, where

-1 0 0 1 -2
0 -5 3 4 0
A | A2 | _
| 1 1 -8 3 0],
21 | ez —4 0 2[-6 0
0 0 0 1 -1
0 0 2| -1 0
0 -1 0 1 0
|:Adll Ad12:|_ 0 0 -1 3 0
Adg21 | Adz2 T o0 11 =2 0
0 1 0| 0 -3

According to (40)-(42), we obtain the characteris-
tic polynomial and adjugate matrix as

a(s) = +7s+6,
adJ (Slnfp — Aérz) = Y]_S"’ Y.27
where

11
Yi=1I, Yzz[o 6}

14 10 -6 O 0 0

18 0 0 O 0 0

M — 0O O O 16 28 12
o 0O O 0 &6 0 of”’

-4 -8 -6 -6 —-16 -12

-6 0 0 -2 0 0

A(M)=[0 02339 03898 0O 03509 —0.818ﬂT.

SinceA((M) # 0, the second-order observers ex-
ist for the system. Accordinghf} # 0 exists and is
obtained by taking any column a{(). Matrices
b, andb; are then obtained based on (45), where

by [0 02339 03899,
by [0 03509 -0.8187" .
From (35) and (36)L.1 andL, are obtained

. _ [0 —14034 -233090
171 0 —-14034 32747 |°
L, _ | —42103 0©

2= 42103 0"

69



ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics

It follows (17) andP =I5, L = [Ll Lz] and itis Thus, for this example, we have=5,p=2,m=
easy to verify condition (10) that 2 andl = 2. SinceC = [l2 0], impliesP =I5 and
9.3562 _5.1459 according to (18) and (19), sub-matrides, A12, A1,
LE = [ _46781 04678 ] # 0. Az, Ad11,Ad12, Ag21 andAgp; are obtained, where
Thus, all the conditions for Theorem 3 are satis- -1 00 1 -2
i : 0 - 3 4 0
fied and hence a second-order observer and first-order | Aj | Ap | 1 ) 3 )
residual generator exist and can be constructedtode- | Ay | Apo | — 4 0 _2 6 0 ’
tect faults in the system by determining all other un- _O ol o _1 1
known parameters, where N
N — L, T=[1 1], 2 -1{0 0O
| 0 -5 ] BN Adi1 | Adi2 | —
= 1 -1({0 0 O
G 145021 04678 —0.9356 Adz1 | Adzz 1 0|0 0 0
- | —135665 32747 -5.6137 |’ o 1l0 o o
G — 42103 14034 -—-1.8712 Let us assigm = 2, the poles oN to be ats; =
d = | 42103 14034 09356 | ~7,%=-9,Q=1andTQ=[ 1 1 ]. Itfollows
. the same line as in the calculations of Example 2, the
—2.3390 09356 L ! .
H = | 32747 —4.6781] , matrix Mom (()45)0|s ((J)bta(t)lneg asl6 —
F = [0 28069 —0.9356]. v — 00000 O -3 —-78 0
Figure 2 indicates that the residual generatorcan"~ | 0. 0. 0 0 0 O —20 10 6
detect the faults(t) and f,(t) in the system. It is 0 000OO0OD O 8 -40 O

clear in this example that the design of residual gen-  gjnce rankM) = 3 < gp= 4, the condition (49)
erator is very easy and systematic. Furthermore, thepqs and\((M) # 0 exists, where

order of the functional observer is very low compar-

ing to conventional FD schemes using full-order or A{(M) = [ 0.31562 01686 —0.7354 —0.5757 |
reduced-order state observers. This example thus fur-  Accordingly,b; andb, are obtained, where
ther highlights the attractiveness of the FD scheme

T

proposed. by =[0.3152 01686 ,b, = [-0.7354 —0.5757 .
ors . From (35) and (36)L.1 andL, are obtained
_:E:t :vzj Lo — { 13.2368 70828]
I N e I e 1= | 176490 -138173 "
=== Residual r(t)
L . |, _ [ —101017 —156751 44123
R Y R Y 2= | 101017 156751 —4.4123 |
20k ] It follows (17) andP =15, L = [L1 Lp] and itis
L j easy to verify that
207 i 1 41.8003 224096
N— LE= { 304781 —42.3809] 70
05 10 15 20 2 0 3 40 45 50 Thus, all the conditions for Theorem 3 are satis-
Time(sec) fied and hence a second-order observer and a residual
Figure 2: Residual generator based on second-order fuc-generator exist and can be constructed to detect faults
tional observers detects faults in the system. in the system by determining all other unknown pa-
rameters, where
Example 3: This example is given to demonstrate [ 7 0
Case 2 (Section 4), where<lp < 4! . Let us con- N = 0 _9 } ,T=[1 1],
sider a system which has matrig®®B, andE as same -
as in Example 2, however, matricdg andC given as G — 132019 4064 }
T —193791 -45.168 |’
-1 0 00O 10 -
2 100 0 0o 1 Gy — 6.502 7431]
Ay = 1 -1 00 0|, c=|00 | —15559 -0.697 |’
—é (1’ 8 8 g 8 g Lo [ 8135 21597] F[4.412]T
o —7.547 -28331 |’ =~ | 6.734
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Figure 3: Residual generator based on second-order func-

tional observers detects faults in the system.

Figure 3 indicates that a residual generator based
on a second-order observer can effectively detects the

faults f1(t) and fx(t) in the system. It clearly illus-
trates the Remark 2.

6 CONCLUSION

This paper has proposed a new fault detection scheme

using minimum-order functional observers to con-
struct residual generators to timely trigger actuator

faults in time-delay systems. The proposed approach

is based on solving a generalized Sylvester matrix

equation via a parametric approach. Existence con-

ditions and systematic procedures for designing the

proposed fault detection scheme have been presented.

The lowest possible order and the simplicity of the
approach are the hallmark of the proposed novel fault

detection scheme. Three examples have been con-

structed to prove the theory of the scheme.
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