Particle Swarm Optimization of Economic Dispatch Problem: A Brief Review Transfer

Elahe Faghihnia, Sadegh Khaleghi, Reihane Kardehi Moghaddam, Mahdi Zarif

2015

Abstract

Electrical energy production has changed various features of the energy manufacturing. According to this map, lack of energy supplies, improving energy cost, environment matter, require optimal economic dispatch. Economic load dispatch (ED) problem is essentially nonlinear. Since we know that the traditional methods donot have the ability to solve problems like this for reasons such as caught up in the trap of local optimal point or low convergence speed. Therefore, the use of algorithms that are more powerful is inevitable. An efficient algorithm for solving ED problem is particle swarm optimization considering to its fast convergence to global optima and computationally efficiency. PSO based algorithms has achieved a pluperfect identification of the best solution for such kind of EDPs in last decade. In this paper, we try various techniques associated with PSO, fully checked.

References

  1. Blum, C. (2005). Ant colony optimization: Introduction and recent trends. Physics of Life Reviews, 2(4), 353-373.
  2. Chang, G. W., Aganagic, M., Waight, J. G., Medina, J., Burton, T., Reeves, S., & Christoforidis, M. (2001). Experiences with mixed integer linear programming based approaches on short-term hydro scheduling. Power Systems, IEEE Transactions on, 16(4), 743-749.
  3. Chang, S.-C., Chen, C.-H., Fong, I.-K., & Luh, P. B. (1990). Hydroelectric generation scheduling with an effective differential dynamic programming algorithm. Power Systems, IEEE Transactions on, 5(3), 737-743.
  4. Dayhoff, J. E. (1990). Neural network architectures: an introduction: Van Nostrand Reinhold Co.
  5. Finardi, E. C., Silva, E. L. d., & Sagastizábal, C. (2005). Solving the unit commitment problem of hydropower plants via Lagrangian relaxation and sequential quadratic programming. Computational & applied mathematics, 24(3), 317-342.
  6. Fogel, D. B., & Fogel, L. J. (1996). An introduction to evolutionary programming. Paper presented at the Artificial Evolution.
  7. Franco, P., Carvalho, M., & Soares, S. (1994). A network flow model for short-term hydro-dominated hydrothermal scheduling problems. Power Systems, IEEE Transactions on, 9(2), 1016-1022.
  8. Garcia-Gonzalez, J., & Castro, G. A. (2001). Short-term hydro scheduling with cascaded and head-dependent reservoirs based on mixed-integer linear programming. Paper presented at the Power Tech Proceedings, 2001 IEEE Porto.
  9. García-González, J., Parrilla, E., & Mateo, A. (2007). Riskaverse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market. European Journal of Operational Research, 181(3), 1354-1369.
  10. Hwang, C.-R. (1988). Simulated annealing: theory and applications. Acta Applicandae Mathematicae, 12(1), 108-111.
  11. Kennedy, J. (2010). Particle swarm optimization Encyclopedia of Machine Learning (pp. 760-766): Springer.
  12. Mariano, S., Catalao, J., Mendes, V., & Ferreira, L. (2007). Profit-based short-term hydro scheduling considering head-dependent power generation. Paper presented at the Power Tech, 2007 IEEE Lausanne.
  13. Martinez Ramos, J., Lora, A. T., Santos, J. R., & Expósito, A. G. (2001). Short-term hydro-thermal coordination based on interior point nonlinear programming and genetic algorithms. Paper presented at the Power Tech Proceedings, 2001 IEEE Porto.
  14. Meng, K., Wang, H. G., Dong, Z., & Wong, K. P. (2010). Quantum-inspired particle swarm optimization for valve-point economic load dispatch. Power Systems, IEEE Transactions on, 25(1), 215-222.
  15. Mezger, A. J., & de Almeida, K. C. (2007). Short term hydrothermal scheduling with bilateral transactions via bundle method. International Journal of Electrical Power & Energy Systems, 29(5), 387-396.
  16. Moscato, P. (1993). An introduction to population approaches for optimization and hierarchical objective functions: A discussion on the role of tabu search. Annals of Operations Research, 41(2), 85-121.
  17. Park, J.-B., Jeong, Y.-W., Shin, J.-R., & Lee, K. Y. (2010). An improved particle swarm optimization for nonconvex economic dispatch problems. Power Systems, IEEE Transactions on, 25(1), 156-166.
  18. Shiina, T., & Watanabe, I. (2004). Lagrangian relaxation method for price-based unit commitment problem. Engineering Optimization, 36(6), 705-719.
  19. Victoire, T. A. A., & Jeyakumar, A. E. (2004). Hybrid PSO-SQP for economic dispatch with valve-point effect. Electric Power Systems Research, 71(1), 51-59.
  20. Whitley, D. (1994). A genetic algorithm tutorial. Statistics and Computing, 4(2), 65-85.
  21. Wood, A. J., & Wollenberg, B. F. (2012). Power generation, operation, and control: John Wiley & Sons.
Download


Paper Citation


in Harvard Style

Faghihnia E., Khaleghi S., Moghaddam R. and Zarif M. (2015). Particle Swarm Optimization of Economic Dispatch Problem: A Brief Review Transfer . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 72-77. DOI: 10.5220/0005507400720077


in Bibtex Style

@conference{icinco15,
author={Elahe Faghihnia and Sadegh Khaleghi and Reihane Kardehi Moghaddam and Mahdi Zarif},
title={Particle Swarm Optimization of Economic Dispatch Problem: A Brief Review Transfer},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={72-77},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005507400720077},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Particle Swarm Optimization of Economic Dispatch Problem: A Brief Review Transfer
SN - 978-989-758-122-9
AU - Faghihnia E.
AU - Khaleghi S.
AU - Moghaddam R.
AU - Zarif M.
PY - 2015
SP - 72
EP - 77
DO - 10.5220/0005507400720077