applications. Base of the popularity is from its
simplicity. The tuning method of Ziegler-Nichols
(Ziegler and Nichols, 1942) is implemented widely
in the industrial process area. The reproduction of
the PID gains relies on the presence of a process
time delay. The control system proposed in this
paper is based on neural networks. To improve the
performance of the system, PI controller is added to
the system. Figure 3 illustrates the block diagram of
the closed loop system.
Figure 3: Block diagram of the closed loop system.
The block diagram shows that a PI controller is
linked with the neural network controller system in
closed loop. Then, the PI controller becomes:
1
0
() () ( )
pI
tet ed
U
KK
τ
ττ
=+
(4)
where e(t) is the closed loop error function. The
basic action of the proportional gain is to determine
the system response time or bandwidth. The integral
gain improves steady-state and low frequency
trajectory following by adding stiffness against
disturbances and steady state errors.
3 PERFORMANCE
EVALUATION
In recent years, different load forecasting methods
have been developed and implemented. Artificial
neural network based methods are popular in smart
grid applications. This study focuses on comparing a
house's neural network based energy consumption
load forecast and PI+Neural Network energy
consumption load forecast. There are 7 inputs in this
house. These inputs include refrigerator, washing
machine, dishwasher, television, lighting, heating/air
condition and computer. The dataset is collected
hour by hour for 1 week. Table 1 lists the partial
dataset. The simulated results were observed using
MATLAB Neural Network Toolbox (MathWorks,
2014) and they were compared with their actual
datasets. The improved NN model is a 1-input layer,
2-hidden layers (including 16 and 15 nodes,
respectively) and 1-output layer. As already
explained, the Levenberg-Marquardt optimization
algorithm was used since it presents certain
advantages over BP (Michailidis et al, 2014).
Table 1: Partial data set.
Inputs Outputs
RG WM DW TV Light. H/AC PC RG WM DW TV
ight. H/AC PC
1 00:00
50,0 0,0 0,0 0,0 50,0 200,0 0,0 50,0 0,0 0,0 0,0 51,0 200,0 0,0
2 01:00
50,0 0,0 0,0 0,0 50,0 200,0 0,0 49,0 0,0 0,0 0,0 50,0 196,0 0,0
3 02:00
50,0 0,0 0,0 0,0 0,0 200,0 0,0 51,0 0,0 0,0 0,0 0,0 203,0 0,0
4 03:00
50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,0 0,0 0,0 0,0 0,0 201,0 0,0
5 04:00
50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,5 0,0 0,0 0,0 0,0 198,0 0,0
6 05:00
50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,0 0,0 0,0 0,0 0,0 199,0 0,0
7 06:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 51,0 0,0 0,0 0,0 0,0 197,0 0,0
8 07:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 49,5 0,0 0,0 0,0 0,0 202,0 0,0
9 08:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 49,0 0,0 0,0 0,0 0,0 200,0 0,0
10 09:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,0 0,0 0,0 0,0 0,0 204,0 0,0
11 10:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 49,0 0,0 0,0 0,0 0,0 199,0 0,0
12 11:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 48,5 0,0 0,0 0,0 0,0 200,0 0,0
13 12:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 51,5 0,0 0,0 0,0 0,0 201,0 0,0
14 13:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,0 0,0 0,0 0,0 0,0 205,0 0,0
15 14:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 49,5 0,0 0,0 0,0 0,0 200,0 0,0
16 15:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,0 0,0 0,0 0,0 0,0 199,0 0,0
17 16:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 51,0 0,0 0,0 0,0 0,0 202,0 0,0
18 17:00 50,0 0,0 0,0 0,0 0,0 200,0 0,0 50,5 0,0 0,0 0,0 0,0 201,0 0,0
19 18:00 50,0 0,0 0,0 0,0 50,0 200,0 20,0 49,0 0,0 0,0 0,0 48,0 200,0 19,0
20 19:00 50,0 50,0 0,0 150,0 50,0 200,0 20,0 50,0 49,0 0,0 149,0 49,0 203,0 21,0
21 20:00 50,0 50,0 0,0 150,0 50,0 200,0 20,0 49,0 50,0 0,0 151,0 51,0 199,0 20,0
22 21:00 50,0 0,0 0,0 150,0 50,0 200,0 20,0 48,5 0,0 0,0 150,0 50,0 197,0 18,0
23 22:00 50,0 0,0 0,0 150,0 50,0 200,0 20,0 51,0 0,0 0,0 152,0 51,0 198,0 21,0
24 23:00 50,0 0,0 0,0 0,0 50,0 200,0 0,0 50,0 0,0 0,0 0,0 48,0 200,0 0,0
PI-controlledANN-basedEnergyConsumptionForecastingforSmartGrids
113