Transactions on Fuzzy Systems. DOI
10.1109/TFUZZ.2014.2379252.
Duleba, I., Sasiadek, J. Z., 2003. Nonholonomic motion
planning based on Newton algorithm with energy
optimization.
IEEE Transactions on Control Systems
Technology
. 11, 355-363.
El Amraoui, A., Mesghouni, K., 2014. Optimization of a
train traffic management problem under uncertainties
and disruptions.
Studies in Informatics and Control.
23, 313-323.
Ferreira, P. M., Ruano, A. E., 2009. On-line sliding-
window methods for process model adaptation.
IEEE
Transactions on Instrumentation and Measurement
.
58, 3012-3020.
Filip, F.-G., Leiviskä, K., 2009. Large-scale complex
systems. In
Springer Handbook of Automation, S. Y.
Nof, Ed. Berlin, Heidelberg: Springer-Verlag, 619-
638.
Gao, Q., Feng, G., Dong, D., Liu, L., 2015. Universal
fuzzy models and universal fuzzy controllers for
discrete-time nonlinear systems.
IEEE Transactions
on Cybernetics
. 54, 880-887.
Guerra, T.-M., Bernal, M., Guelton, K., Labiod, S., 2012.
Non-quadratic local stabilization for continuous-time
Takagi-Sugeno models.
Fuzzy Sets and Systems. 201,
40-54.
Gusikhin, O. Y., Rychtyckyj, N., Filev, D., 2007.
Intelligent systems in the automotive industry:
applications and trends.
Knowledge and Information
Systems
. 12, 147-168.
Haber, R. E., Haber-Haber, R., Jiménez, A., Galán, R.,
2009. An optimal fuzzy control system in a network
environment based on simulated annealing. An
application to a drilling process.
Applied Soft
Computing
. 9, 889-895.
Jang, J.-S. R., 1993. ANFIS: Adaptive-Network-based
Fuzzy Inference System.
IEEE Transactions on
Systems, Man, and Cybernetics
. 23, 665-685.
Johanyák, Z. C., Papp, O., 2012. A hybrid algorithm for
parameter tuning in fuzzy model identification.
Acta
Polytechnica Hungarica
. 9, 153-165.
Juang, C.-F., Lin, C.-T., 1998. An on-line self-
constructing neural fuzzy inference network and its
applications.
IEEE Transactions on Fuzzy Systems. 6,
12-32, 1998.
Kasabov, N. K., Song, Q., 2002. DENFIS: Dynamic
Evolving Neural-Fuzzy Inference System and its
application for time-series prediction.
IEEE
Transactions on Fuzzy Systems
. 10, 144-154.
Kolemishevska-Gugulovska, T., Stankovski, M., Rudas, I.
J., Jiang, N., Jing, J., 2012. A min-max control
synthesis for uncertain nonlinear systems based on
fuzzy T-S model. In
Proceedings of 6
th
IEEE
International Conference Intelligent Systems
. Sofia,
Bulgaria, 303-310.
Lam, H. K., Lauber, J., 2013. Membership-function-
dependent stability analysis of fuzzy-model-based
control systems using fuzzy Lyapunov functions.
Information Sciences. 232, 253-266.
Li, H., Sun, X., Shi, P., Lam, H.-K., 2015. Control design
of interval type-2 fuzzy systems with actuator fault:
Sampled-data control approach.
Information Sciences.
302, 1-13.
Li, Y.-M., Sun, Y.-Y., 2012. Type-2 T-S fuzzy impulsive
control of nonlinear systems.
Applied Mathematical
Modelling
. 36, 2710-2723.
Lin, F.-J., Lin, C.-H., Shen, P.-H., 2001. Self-constructing
fuzzy neural network speed controller for permanent-
magnet synchronous motor drive.
IEEE Transactions
on Fuzzy Systems
. 9, 751-759.
Lughofer, E., 2011.
Evolving Fuzzy Systems -
Methodologies, Advanced Concepts and Applications
.
Berlin, Heidelberg: Springer-Verlag.
Lughofer, E., 2013. On-line assurance of interpretability
criteria in evolving fuzzy systems - achievements, new
concepts and open issues.
Information Sciences. 251,
22-46.
Lughofer, E., Klement, E. P., 2005. FLEXFIS: A variant
for incremental learning of Takagi-Sugeno fuzzy
systems. In
Proceedings of 14
th
IEEE International
Conference on Fuzzy Systems
. Reno, NV, USA, 915-
920.
Osaba, E., Diaz, F., Onieva, E., Carballedo, R., Perallos,
A., 2014. AMCPA: A population metaheuristic with
adaptive crossover probability and multi-crossover
mechanism for solving combinatorial optimization
problems.
International Journal of Artificial
Intelligence
. 12, 1-23.
Platt, J., 1991. A resource allocating network for function
interpolation.
Neural Computation. 3, 213-225.
Pratama, M., Anavatti, S. G., Angelov, P., Lughofer, E.,
2014. PANFIS: A novel incremental learning
machine.
IEEE Transactions on Neural Networks and
Learning Systems
. 25, 55-68.
Precup, R.-E., Angelov, P., Costa, B. S. J., Sayed-
Mouchaweh, M., 2015. An overview on fault
diagnosis and nature-inspired optimal control of
industrial process applications.
Computers in Industry.
DOI: 10.1016/j.compind.2015.03.001.
Precup, R.-E., David, R.-C., Petriu, E. M., Preitl, S.,
Radac, M.-B., 2012a. Novel adaptive gravitational
search algorithm for fuzzy controlled servo systems.
IEEE Transactions on Industrial Informatics. 8, 791-
800.
Precup, R.-E., Dragos, C.-A., Preitl, S., Radac, M.-B.,
Petriu, E. M., 2012b. Novel tensor product models for
automatic transmission system control.
IEEE Systems
Journal
. 6, 488-498.
Precup, R.-E., Filip, H.-I., Radac, M.-B., Petriu, E. M.,
Preitl, S., Dragos, C.-A., 2014. Online identification of
evolving Takagi-Sugeno-Kang fuzzy models for crane
systems.
Applied Soft Computing. 24, 1155-1163.
Precup, R.-E., Filip, H.-I., Radac, M.-B., Pozna, C.,
Dragos, C.-A., Preitl, S., 2012c. Experimental results
of evolving Takagi-Sugeno fuzzy models for a
nonlinear benchmark. In
Proceedings of 2012 IEEE
3
rd
International Conference on Cognitive
Infocommunications
. Kosice, Slovakia, 567-572.
ImplementationofEvolvingFuzzyModelsofaNonlinearProcess
13