tion for balancing the skew-Hamiltonian/Hamiltonian
eigenproblem data, preserving the structure.
5 CONCLUSIONS
Numerical algorithms for the solution of common and
structured eigenproblems, encountered in many con-
trol theory applications and in other domains, have
been investigated. Eigenvalue computations for stan-
dard as well as formal matrix products have been
considered, and their accuracy and conditioning has
been discussed. Simple examples highlight the pit-
falls which may appear in such numerical computa-
tions, using state-of-the-art solvers. An iterative re-
finement process for the periodic Schur decomposi-
tion (not yet offered by software packages) is pro-
posed, and the improvement of the results is illus-
trated. Balancing the matrices or matrix pencils and
the use of condition number estimates for eigenvalues
are shown to be essential options in investigating the
behavior of the solvers and problem sensitivity.
REFERENCES
Anderson, E., Bai, Z., Bischof, C., Blackford, S., Demmel,
J., Dongarra, J., Du Croz, J., Greenbaum, A., Ham-
marling, S., McKenney, A., and Sorensen, D. (1999).
LAPACK Users’ Guide. SIAM, Philadelphia, third
edition.
Benner, P. (1999). Computational methods for linear-
quadratic optimization. Supplemento ai Rendiconti
del Circolo Matematico di Palermo, II, (58):21–56.
Benner, P., Byers, R., Losse, P., Mehrmann, V., and
Xu, H. (2007). Numerical solution of real skew-
Hamiltonian/Hamiltonian eigenproblems. Technical
report, Technische Universit
¨
at Chemnitz, Chemnitz.
Benner, P., Byers, R., Mehrmann, V., and Xu, H. (2002).
Numerical computation of deflating subspaces of
skew Hamiltonian/Hamiltonian pencils. SIAM J. Ma-
trix Anal. Appl., 24(1):165–190.
Benner, P. and Kressner, D. (2006). Fortran 77 subroutines
for computing the eigenvalues of Hamiltonian matri-
ces II. ACM Trans. Math. Softw., 32(2):352–373.
Benner, P., Kressner, D., Sima, V., and Varga, A.
(2010). Die SLICOT-Toolboxen f
¨
ur Matlab. at—
Automatisierungstechnik, 58(1):15–25.
Benner, P., Mehrmann, V., Sima, V., Van Huffel, S., and
Varga, A. (1999). SLICOT — A subroutine library
in systems and control theory. In Applied and Com-
putational Control, Signals, and Circuits, 1, ch. 10,
pp. 499–539. Birkh
¨
auser, Boston.
Benner, P., Sima, V., and Voigt, M. (2012a). L
∞
-norm com-
putation for continuous-time descriptor systems us-
ing structured matrix pencils. IEEE Trans. Automat.
Contr., AC-57(1):233–238.
Benner, P., Sima, V., and Voigt, M. (2012b). Robust and
efficient algorithms for L
∞
-norm computations for de-
scriptor systems. In 7th IFAC Symposium on Robust
Control Design, pp. 189–194.
Benner, P., Sima, V., and Voigt, M. (2013a). FOR-
TRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems. Part I: Al-
gorithms and applications. www.slicot.org.
Benner, P., Sima, V., and Voigt, M. (2013b). FOR-
TRAN 77 subroutines for the solution of skew-
Hamiltonian/Hamiltonian eigenproblems. Part II: Im-
plementation and numerical results. www.slicot.
org.
Bojanczyk, A. W., Golub, G., and Van Dooren, P. (1992).
The periodic Schur decomposition: algorithms and
applications. In SPIE Conference Advanced Signal
Processing Algorithms, Architectures, and Implemen-
tations III, 1770, pp. 31–42.
Golub, G. H. and Van Loan, C. F. (1996). Matrix Computa-
tions. The Johns Hopkins University Press, Baltimore,
Maryland, third edition.
Granat, R., K
˚
agstr
¨
om, B., and Kressner, D. (2007). Com-
puting periodic deflating subspaces associated with a
specified set of eigenvalues. BIT Numerical Mathe-
matics, 47(4):763–791.
Laub, A. J. (1979). A Schur method for solving algebraic
Riccati equations. IEEE Trans. Automat. Contr., AC–
24(6):913–921.
MathWorks (2014). MATLAB
R
: The Language of Techni-
cal Computing. R2014b. The MathWorks, Inc.
Mehrmann, V. (1991). The Autonomous Linear Quadratic
Control Problem. Theory and Numerical Solution.
Springer-Verlag, Berlin.
Sima, V. (1996). Algorithms for Linear-Quadratic Opti-
mization. Marcel Dekker, Inc., New York.
Sima, V. (2010). Structure-preserving computation of stable
deflating subspaces. In 10th IFAC Workshop “Adapta-
tion and Learning in Control and Signal Processing”.
Sima, V. (2011a). Computational experience with structure-
preserving Hamiltonian solvers in optimal control. In
8th International Conference on Informatics in Con-
trol, Automation and Robotics, vol. 1, pp. 91–96.
SCITEPRESS.
Sima, V. (2011b). Computational experience with structure-
preserving Hamiltonian solvers in complex spaces. In
5th International Scientific Conference on Physics and
Control.
Sima, V., Benner, P., and Kressner, D. (2012). New SLI-
COT routines based on structured eigensolvers. In
2012 IEEE International Conference on Control Ap-
plications, pp. 640–645. Omnipress.
Van Huffel, S., Sima, V., Varga, A., Hammarling, S., and
Delebecque, F. (2004). High-performance numeri-
cal software for control. IEEE Control Syst. Mag.,
24(1):60–76.
ICINCO2015-12thInternationalConferenceonInformaticsinControl,AutomationandRobotics
178