6 CONCLUSIONS
In this paper, we proposed a way of utilizing uncer-
tainty associated with integral approximations in the
nonlinear quadrature-based filtering algorithms. This
was enabled by the Bayesian treatment of quadrature.
The proposed filtering algorithms were tested on a
univariate benchmarking example. The results show
that the filters utilizing additional uncertainty pro-
vided by the BQ show significant improvement in
terms of credibility of their estimates.
Proper setting of the hyper-parameters is crucially
important for achieving competitive results. The need
for a principled approach for dealing with the hyper-
parameters could prompt further research. Another
possible research direction could be concerned with
the adaptive placement of σ-points based on the pos-
terior integral variance.
ACKNOWLEDGEMENTS
This work was supported by the Czech Science Foun-
dation, project no. GACR P103-13-07058J.
REFERENCES
Arasaratnam, I. and Haykin, S. (2009). Cubature Kalman
Filters. IEEE Transactions on Automatic Control,
54(6):1254–1269.
Bhar, R. (2010). Stochastic filtering with applications in
finance. World Scientific.
Deisenroth, M. P., Huber, M. F., and Hanebeck, U. D.
(2009). Analytic moment-based Gaussian process fil-
tering. In Proceedings of the 26th Annual Interna-
tional Conference on Machine Learning - ICML ’09,
pages 1–8. ACM Press.
Deisenroth, M. P. and Ohlsson, H. (2011). A General Per-
spective on Gaussian Filtering and Smoothing: Ex-
plaining Current and Deriving New Algorithms. In
American Control Conference (ACC), 2011, pages
1807–1812. IEEE.
Deisenroth, M. P., Turner, R. D., Huber, M. F., Hanebeck,
U. D., and Rasmussen, C. E. (2012). Robust Filtering
and Smoothing with Gaussian Processes. IEEE Trans-
actions on Automatic Control, 57(7):1865–1871.
Duník, J., Straka, O., and Šimandl, M. (2013). Stochastic
Integration Filter. IEEE Transactions on Automatic
Control, 58(6):1561–1566.
Gelb, A. (1974). Applied Optimal Estimation. The MIT
Press.
Gillijns, S., Mendoza, O., Chandrasekar, J., De Moor, B.,
Bernstein, D., and Ridley, A. (2006). What is the en-
semble kalman filter and how well does it work? In
American Control Conference, 2006, page 6.
Girard, A., Rasmussen, C. E., Quiñonero Candela, J., and
Murray-Smith, R. (2003). Gaussian Process Priors
With Uncertain Inputs Application to Multiple-Step
Ahead Time Series Forecasting. In Becker, S., Thrun,
S., and Obermayer, K., editors, Advances in Neural
Information Processing Systems 15, pages 545–552.
MIT Press.
Gordon, N. J., Salmond, D. J., and Smith, A. F. M. (1993).
Novel approach to nonlinear/non-Gaussian Bayesian
state estimation. IEE Proceedings F (Radar and Sig-
nal Processing), 140(2):107–113.
Grewal, M. S., Weill, L. R., and Andrews, A. P. (2007).
Global Positioning Systems, Inertial Navigation, and
Integration. Wiley.
Ito, K. and Xiong, K. (2000). Gaussian Filters for Nonlinear
Filtering Problems. IEEE Transactions on Automatic
Control, 45(5):910–927.
Jiang, T., Sidiropoulos, N., and Giannakis, G. (2003).
Kalman filtering for power estimation in mobile com-
munications. Wireless Communications, IEEE Trans-
actions on, 2(1):151–161.
Julier, S. J., Uhlmann, J. K., and Durrant-Whyte, H. F.
(2000). A New Method for the Nonlinear Transfor-
mation of Means and Covariances in Filters and Es-
timators. IEEE Transactions on Automatic Control,
45(3):477–482.
Kalman, R. E. (1960). A New Approach to Linear Filtering
and Prediction Problems. Journal of Basic Engineer-
ing, 82(1):35–45.
Li, X. R. and Zhao, Z. (2006). Measuring Estimator’s Cred-
ibility: Noncredibility Index. In Information Fusion,
2006 9th International Conference on, pages 1–8.
Maybeck, P. S. (1982). Stochastic Models, Estimation and
Control: Volume 2. Academic Press.
Minka, T. P. (2000). Deriving Quadrature Rules from Gaus-
sian Processes. Technical report, Statistics Depart-
ment, Carnegie Mellon University, Tech. Rep.
Nørgaard, M., Poulsen, N. K., and Ravn, O. (2000). New
developments in state estimation for nonlinear sys-
tems. Automatica, 36:1627–1638.
O’Hagan, A. (1991). Bayes–Hermite quadrature. Journal
of Statistical Planning and Inference, 29(3):245–260.
Osborne, M. A., Rasmussen, C. E., Duvenaud, D. K., Gar-
nett, R., and Roberts, S. J. (2012). Active Learning
of Model Evidence Using Bayesian Quadrature. In
Advances in Neural Information Processing Systems
(NIPS), pages 46–54.
Rasmussen, C. E. and Ghahramani, Z. (2003). Bayesian
monte carlo. In S. Becker, S. T. and Obermayer, K.,
editors, Advances in Neural Information Processing
Systems 15, pages 489–496. MIT Press, Cambridge,
MA.
Rasmussen, C. E. and Williams, C. K. (2006). Gaussian
Processes for Machine Learning. The MIT Press.
Särkkä, S. (2013). Bayesian Filtering and Smoothing. Cam-
bridge University Press, New York.
Särkkä, S., Hartikainen, J., Svensson, L., and Sandblom,
F. (2014). Gaussian Process Quadratures in Nonlin-
ear Sigma-Point Filtering and Smoothing. In Informa-
ICINCO2015-12thInternationalConferenceonInformaticsinControl,AutomationandRobotics
386