7 CONCLUSIONS
An approach to the statistical linearization of in-
put/output mappings of stochastic discrete-time sys-
tems driven with a white-noise Gaussian input pro-
cess has been considered. The approach is based on
applying consistent measures of dependence of ran-
dom values. Within the approach, the statistical line-
arization criterion is the condition of coincidence of
the mathematical expectations of output processes of
the system and model, and the condition of coinci-
dence of a consistent, in the Kolmogorov sense,
measure of dependence of output and input process-
es of the system and the same measure of depend-
ence of the model output and input processes. Ex-
plicit analytical expressions for the coefficients of
the weight function of the linearized input/output
model were derived as a function of this (forming
the statistical linearization criterion) consistent
measure of dependence of output and input process-
es of the system. Meanwhile, such a function defines
the form of a transformation that enables one to con-
struct corresponding consistent in the Rényi sense
measure of dependence from a consistent in the
Kolmogorov sense measure of dependence. In the
paper, a consistent in the Kolmogorov sense meas-
ure of dependence was referred as consistent in the
Rényi sense, if such a measure meets all Rényi Axi-
oms (Rényi, 1959) with the exception, may be, the
axiom of invariance with respect to one-to-one trans-
formations of random values under study. In particu-
lar, such a consistent in the Rényi sense measure of
dependence has been constructed from the Cauchy-
Schwartz divergence, being a consistent measure of
dependence in the Kolmogorov sense.
REFERENCES
Gebelein, H., 1941. “Das statistische Problem der
Korrelation als Variations- und Eigenwertproblem und
sein Zusammenhang mit der Ausgleichungsrechnung”,
Zeitschrift für Angewandte Mathematik und Mechanik,
vol. 21, no. 6, pp. 364-379.
Kotz, S., Balakrishnan, N., and N.L. Johnson, 2000. Con-
tinuous Multivariate Distributions. Volume 1. Models
and Applications / Second Edition, Wiley, New York,
752 p.
Nadarajah, S. and K. Zografos, 2003. “Formulas for Rényi
information and related measures for univariate distri-
butions”, Information Sciences, vol. 155, no. 1, pp.
119-138.
Nadarajah, S. and K. Zografos, 2005a. “Expressions for
Rényi and Shannon entropies for bivariate distribu-
tions”, Information Sciences, vol. 170, no. 2-4,
pp. 173-189..
Principe, J., Xu, D., and J. Fisher, 2000. “Information
Theoretic Learning”, In: Unsupervised Adaptive Fil-
tering / Haykin (Ed.). Wiley, New York, vol. 1, pp.
265-319.
Rajbman, N.S., 1981. “Extensions to nonlinear and mini-
max approaches”, Trends and Progress in System
Identification, ed. P. Eykhoff, Pergamon Press, Ox-
ford, pp. 185-237.
Rényi, A., 1959. “On measures of dependence”, Acta
Math. Hung., vol. 10, no 3-4, pp. 441-451.
Rényi, A., 1961. “On measures of information and entro-
py”, in: Proceedings of the 4th Berkeley Symposium
on Mathematics, Statistics and Probability (June 20-
July 30, 1960). University of California Press, Berke-
ley, California, vol. 1, pp. 547-561.
Rényi, A., 1976a. “Some Fundamental Questions of In-
formation Theory”, Selected Papers of Alfred Rényi,
Akademiai Kiado, Budapest, vol. 2, pp. 526-552.
Rényi, A., 1976b. “On Measures of Entropy and Infor-
mation”, Selected Papers of Alfréd Renyi, Akademiai
Kiado, Budapest, vol. 2, pp. 565-580.
Roberts, J.B. and P.D. Spanos, 2003. Random Vibration
and Statistical Linearization, Dover, New York,
464 p.
Sarmanov, O.V and E.K. Zakharov, 1960. “Measures of
dependence between random variables and spectra of
stochastic kernels and matrices”, Matematicheskiy
Sbornik, vol. 52(94), pp. 953-990. (in Russian).
Sarmanov, O.V., 1963a. “Investigation of stationary Mar-
kov processes by the method of eigenfunction expan-
sion”, Sel. Trans. Math. Statist. Probability, vol. 4, pp.
245-269.
Sarmanov, O.V., 1963b. “The maximum correlation coef-
ficient (nonsymmetric case)”, Sel. Trans. Math. Statist.
Probability, vol. 4, pp. 207-210.
Sarmanov, O.V., 1967. “Remarks on uncorrelated Gaussi-
an dependent random variables”, Theory Probab.
Appl., vol. 12, issue 1, pp. 124-126.
Socha. L., 2008. Linearization Methods for Stochastic
Dynamic Systems, Lect. Notes Phys. 730, Springer,
Berlin, Heidelberg, 383 p.
Zografos, K. and S. Nadarajah, 2005b. “Expressions for
Rényi and Shannon entropies for multivariate distribu-
tions”, Statistics & Probability Letters, vol. 71, no. 1,
pp. 71-84.
ICINCO2015-12thInternationalConferenceonInformaticsinControl,AutomationandRobotics
532