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Abstract: This paper addresses the problem of multiple sensor fusion in situations where the system dynamics suffers 
from unknown parameter variation. An adaptive nonlinear information filter has been proposed for such 
multi sensor estimation problems where the process noise covariance becomes unknown as a consequence 
of unknown parameter variation. The proposed filter, based on the Divided Difference interpolation 
formula, ensures satisfactory estimation performance by online adaptation of the unknown process noise 
covariance and makes sensor fusion successful. Efficacy of the proposed filter is demonstrated with the help 
of a tracking problem in a sensor fusion configuration. Results from Monte Carlo simulation indicate that 
though the process noise covariance is unknown, the performance of the proposed filter is demonstrably 
superior to its non adaptive version in the context of joint estimation of parameter and states. 

1 INTRODUCTION 

Sensor fusion is a conventional process of 
integration of information from multiple sensors 
(homogeneous as well as heterogeneous sensors) to 
provide sufficiently reliable and enriched knowledge 
of the unmeasured states of the system under 
observation. Sensor fusion is extensively employed 
method which may find many real life applications, 
like, target tracking in collaborative sensor networks 
(Vercauteren, 2005), sensor fusion in the fields of 
robot navigation, intelligent vehicle, surveillance 
(Lee, 2008). Formulation of an estimation problem 
and its solution is one of the central aspects of 
successful sensor fusion. The Information filter 
variant of state estimators is widely recommended 
for multiple sensor estimation (Jia, 2013), (Liu, 
2011), (Ge, 2014) and plays a significant role in 
sensor fusion. Because of simple computation 
methodology and easy initialization (Anderson, 
1979) Information filters are preferred over the 
traditional estimators with the standard error 
covariance form. 

For multiple sensor estimation several nonlinear 
information filters viz., Unscented information 
filters (Lee, 2008) , Central Difference information 
filters (Liu, 2011), Cubature and higher order 
cubature information filters (Jia, 2013), (Ge, 2014) 
have been reported in literature where the task of 

multi sensor estimation is found to be satisfactory 
only when the process noise and the measurement 
noise covariances are precisely known. Improper 
choice of noise covariance deteriorates estimation 
results as it is also observed for nonlinear estimation 
problem using the traditional nonlinear filters. 

Unavailability of the knowledge of process noise 
covariance because of unknown parameter variation 
or the process noise statistics is, therefore, a serious 
issue of multiple sensor fusion which needs 
attention. An arbitrary choice of process noise 
covariance degrades the estimation results and the 
nonlinear information filter may even face 
divergence. 

This paper presents a new algorithm for 
Adaptive Divided Difference Information filter 
(ADDIF) which is intended for situations when 
enough knowledge of system dynamics is 
unavailable due to parametric uncertainty. In such 
cases the process noise covariance becomes 
unknown. The proposed filter based on divided 
difference interpolation formula (Nørgaard, 2000) 
ensures satisfactory estimation performance by 
adapting online the unknown process noise 
covariance with ensured positive definiteness. 
Because of the unavailability of the proof for 
convergence like other information filters the 
superiority of the proposed filter is established with 
the help of an extensive Monte Carlo simulation. 
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In this paper the adaptation rule is 
mathematically established and incorporated in the 
algorithm of Divided Difference Information filter, 
alias, Central Difference Information filter (Liu, 
2011) to circumvent the problem of the unknown 
process noise covariance. The method for adaptation 
of process noise covariance (Q) in the proposed 
filter is based on ‘Maximum Likelihood Estimation’ 
which is inspired from the early works on adaptive 
filters (Maybeck, 1982), (Mohamed, 1999) for linear 
signal models. The adaptive sigma point filters with 
standard error covariance form have been reported in 
the literatures which are developed extending the 
concept of adaptation for linear signal models. 
Adaptive UKF (Das, 2013), (Hajiyev, 2014), (Lee, 
2005), (Soken, 2014) adaptive DDF (Lee, 2005) 
have been cited in literatures. A Q adaptive first 
order DDF is presented by (Lee, 2005) where the 
state residual has been used for adaptation. A robust 
adaptive second order DDF is presented by 
(Karlgaard, 2011) where, in lieu of adaptation, focus 
is on robustness. However, formulation of adaptive 
nonlinear information filter has not yet been reported 
in literature to the best knowledge of the authors. 

The proposed Q adaptive information filter 
intended for sensor fusion has the following 
advantages: (i) Unlike Extended Information Filter 
and its higher order relatives computation of 
complex Jacobian and Hessian matrices are not 
required. (ii) As the proposed filter is based on 
Divided Difference Information filter it does not 
need tuning parameters like Unscented Information 
filter and can reportedly achieve same accuracy at a 
lower computational burden (Liu, 2011). (iii) 
Positive definiteness of the adapted process noise 
covariance is ensured. (iv) The proposed filter has 
the flexibility of multiple sensor estimation even in 
face of unknown noise covariance because of its 
dual aspect of information filter framework and Q 
adaptation algorithm. 

2 ADAPTIVE DIVIDED 
DIFFERENCE INFORMATION 
FILTER 

In this section the problem statement is provided 
followed by the solution methods which include the 
algorithm for the proposed filter. 

2.1 Problem Statement 

We consider an augmented nonlinear dynamic 
system as given below.  

k1kk wxfx += − )(  (1) 

( ) ζ
kk

ζζ
k vxgy +=  (2) 

Here n
k Rx ∈ is an augmented state vector, By 

the term augmented state vector, it is meant that the 
unknown parameters have been concatenated with 
the state vector such that dimension of the 
augmented state vector is n. The difference 
equations corresponding to a typical unknown 
parameter

kζ are considered to obey the random walk 

model, i.e., ζ
k1kk wζζ += −

, where ζ
kw  is the noise 

term. ),(~ k
n

k Q0Rw ∈  indicates zero mean process 

noise (Gaussian) with unknown noise covariance. 
mζ

k Ry ∈  is the measurement available from 

the thζ sensor among M different sensors where 

M,,1=ζ . The measurement noise of each sensor 

is considered to be white (Gaussian) and denoted as, 
)(~ ζ

mζ
k R0,Rv ∈ . It is also considered the 

covariances of the sensors are known. The process 
noise covariance,

kQ , however, remains unknown for 

parametric uncertainty and needs to be adapted. 

2.2 Filtering Algorithm 

Initialization: 
Initialize ζR,Q,P,x 000

ˆˆˆ  

Time update steps: 
calculate 

)ˆ(ˆ
1kx P1)(kS −=− FactorCholesky  (3) 

Propagation of a-priori estimate of state: 
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where px,ŝ is pth column of 1)(kSx −ˆ and the interval 

length is chosen as, 3=h for Gaussian distribution 
following (Nørgaard, 2000). 
Propagation of a-priori error covariance: 
The a-priori error covariance is 

[ ][ ] Q(k)S(k)S(k)S(k)SP (2)
xx

(1)
xx

(2)
xx

(1)
xxk +=

T

ˆˆˆˆ
 (5) 

where 

( ){ } ( )( ( )){ }jx,1kijx,1kiji,
(1)
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2
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ˆ hh(k) h −−+= −−
 (6) 

( ){ }ji,(1)
xx (k)S ˆ

 indicates the element (eij) of 

(k)S(1)xxˆ
. (k)S(1)xxˆ

 is first order approximation of the 

square root of a-priori error covariance based on 
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interpolation formulae (Nørgaard, 2000). (k)S (1)xx ˆ
 is to 

be computed using (6) for i=1,…,n and j=1,…,n. 
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(k)S (2)xx ˆ
is the second order approximation to be 

computed in a similar way using (7). 
The predicted information matrix 

kZ and 

information vector kz are related with the predicted 

estimate and error covariance as : 

1
kk PZ −=  (8) 

kkk xZz =  (9) 

Compute (k)Sx  such that it is a Cholesky factor 

of
kP . This factor has been involved for 

measurement update steps. 

)( kx P(k)S FactorCholesky=  (10) 

Measurement update steps: 
For M,,1=ζ  the following steps are to be 

executed: 
Propagation of a-priori estimate of measurement: 
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The cross covariance is  

[ ][ ]T(k)S(k)SP (1)
xyx

xy
k =  (12) 

where 

( ){ } ( )( ( )){ }jx,kjx,kji,
(1)
xy sxgsxg(k)S hh iih −−+= ζζ

2
1  (13) 

( ){ }ji,(1)
xy (k)S  in the similar way of (6) for i=1,…,m 

and  j=1,…,n 
Computation of Pseudo Measurement Matrix: 
Now, to make the information contribution 
equations compatible to those of the EIF, a pseudo-
measurement matrix is defined by (14) following the 
approach of (Lee, 2008). 

( )Txy
k

1
k

ζ
k PPΨ −=  (14) 

Computation of information state contribution and 
its associated matrix: 
Each sensor presents local information state 
contribution and its associated information matrix as 

( ) ( ) ( )kζ
k

ζ
k

1ζ
k

ζ
k

ζ
k xΨRΨφ += − ϑT  (15) 

( ) ( ) ζ
k

1ζ
k

ζ
k

ζ
k ΨRΨΦ

−= T  (16) 

Multi Sensor Estimation: 
For reliable estimation the information regarding the 
measurements obtained from all the sensors are 
combined using the Divided Difference information 
filter. The decentralized approach has been followed 
for multiple sensor estimation to economize 
computational effort.  
As described in the problem statement, 
measurements are available from thζ sensor 

where M,,1=ζ . The local information state 

contribution and its associated information matrix 
from each sensor can be obtained by (15) and (16). 
The measurement update for the information vector 
and information matrix after fusion is simply 
expressed as a linear combination of these local 
information contribution terms by: 


=

+=
M

1ζ

ζ
kkk φzẑ  (17) 


=

+=
M

1ζ

ζ
kkk ΦZẐ  

(18) 

The a posteriori estimates of systems state and error 
covariance matrix are extracted using the formula 
by: 

k
1
kk zZx ˆˆˆ −=  (19) 

1
kk ZP −= ˆˆ  (20) 

Computation of state residual: 
The state residual is defined as 

kkk xxρ −= ˆ  (21) 

Adaptation of process noise covariance: 
Using the estimated residual covariance from a 
sliding window (size N) the adapted Q can be 
expressed as 


+−=

=
k

NkjN 1

1ˆ T
kkk ρρQ  

(22) 

The adapted 
kQ̂ of current instant can be used in (5) 

to refine 
kP  so that the measurement update can be 

further refined by re-computation of (11) to (20). 
Adaptation step is mathematically derived and 
provided in the subsection 2.3. 

2.3 Q –Adaptation Steps 

The Q adaptation formula used in the proposed 
algorithm is derived using MLE technique. The 
steps followed for derivation of adapted Q are 
inspired from the work of (Maybeck, 1982), 
(Mohamed, 1999) for linear signal models. The 
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probability density function of the measurements 
conditioned on adaptive parameter, α at specific 
epoch k is chosen based on innovation sequence. It 
should be borne in mind that the algorithm presented 
in the paper is meant for multiple sensor fusion 
problems. Hence, for the simplicity of the 
mathematical derivation we augment all the 
available measurements to get a single measurement 
vector as [ ]TM

kkkk ϑϑϑϑ 21=  with order mM. 

Therefore, the corresponding measurement noise 
covariance becomes ( )Mdiag kkkk RRRR ,,, 21 =  and the 

pseudo measurement matrix can be expressed as 
( )Mdiag kkkk ΨΨΨΨ ,,, 21 =  

The likelihood function is chosen following 
(Mohamed, 1999) as 

( ) ( )
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k

k

k
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C
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ϑ

α
−−= 2

1exp
2
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k

 
(23) 

or, 

( )( ) ( ){ }k1T
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−++−= ln2ln
2

1
ln mM

k
y

 
(24) 

Multiplying both sides with −2 and neglecting the 
constant term we get 

k
1T

kk k
CC ϑϑ ϑϑ

−+= lnE  (25) 

Innovation sequence has been considered inside 
a window size N as the filter uses a fixed length 
memory. The innovation inside the window will be 
summed. Therefore, the Maximum Likelihood 
condition becomes: 
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The formulae for matrix operation are given 
in(Mohamed, 1999). Here, tr indicate trace of matrix 
and j0=k−N+1. The deduction of the relation 
between innovation covariance, 

kϑC  and the 

measurement noise covariance, 
kR  necessitates the 

augmented pseudo measurement matrix of the 

nonlinear measurement equation. The use of the 
pseudo measurement matrix is justified as reported 
in (Lee, 2008), (Soken, 2015). 
Using the pseudo measurement matrix the 
innovation covariance can be represented as: 

T
kkkk ΨPΨRC −+=

kϑ  (30) 

For adaptation of Q, the adaptive parameter α is 
chosen as

iii Qα =  
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The term [ ][ ]T
(k)S(k)S(k)S(k)S (2)

xx
(1)
xx

(2)
xx

(1)
xx ˆˆˆˆ

is 

analogous to the a priori error covariance when 
process noise covariance is absent. It is assumed 
following the work of (Mohamed, 1999) that the 
within the estimation window the a priori error 
covariance is in steady state. Hence the derivative of 
this term may be ignored. 
Substituting this value in the ML equation we get 
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The term 
kϑkK  can also be represented as 

kkkk xxK −= ˆϑ , which the state residual. 

kkk xxρ −= ˆ  (38) 

Equation (35) can, therefore, be expressed as 

( ){ }[ ] 0
0

=−
=

−−
k
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jjjjjtr 1T

jj
1 PρρPΨKP  (39) 

The expression of
kP  ensures the positive 

definiteness of
kP . Therefore, above expression 

vanishes only when 
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Using (5) 
kP  can be replace as 
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As recommended in (Mohamed, 1999) the term 
[ ][ ]( )T(2)

xx
(1)
xx

(2)
xx

(1)
xxk (k)S(k)S(k)S(k)SP ˆˆˆˆ

ˆ −  becomes often 

low and may be negligible during steady state. 
Hence, adapted Q is approximately represented by 

[ ]
=

=
k

jj
k N

0

1ˆ T
jj ρρQ  (45) 

2.3.1 Notes on Adaptation 

The expression (45) given above has been presented 
in a simplified approach. Mathematically derived 
expression of adapted Q is given by (44). The term 
[ ][ ](k)S(k)S(k)S(k)S (2)

xx
(1)
xx

(2)
xx

(1)
xx ˆˆˆˆ

 of a posteriori 

error covariance 
kP̂  is implicitly dependent on

kP̂  

and acquires a steady value (often low) as the filter 
approaches steady state. Therefore, ignoring their 
effect from the adapted Q is justified and does not 
induce large error in the adapted Q. This 
approximation as mentioned in (Mohamed, 1999) 
for linear systems is followed here so that the 
symmetry and the positive definiteness of adapted Q 
can be ensured. Otherwise singularity cannot be over 
ruled. Because of this assumption the adaptation 
becomes more accurate as the filter reaches steady 
state. 

It is to be noted that the expression (45) which 
same as (22) is appropriate only when the step index 
k  is greater than or equal to the window length N . 
When the step index k  is less than N , adaptation 
begins with available state residual. The window 
length is gradually increased till it reaches the 
desired window length N . Afterward the sliding 
window concept becomes appropriate. 

The window size N, should be appropriately 
chosen considering several factors. A smaller 
window size generally ensures lower computational 
burden but reportedly may be prone to divergence. A 
larger window size ensures unbiased estimates. 
However, it is not suitable for short term variation in 
process noise covariance. 

3 CASE STUDY 

The performance of adaptive DDIF is demonstrated 
using a problem of multi sensor tracking of an 
aircraft which is executing a maneuvering turn. The 
dynamic model of the system is presented in two 
dimensional spaces as given in (Jia, 2013). The turn 
rate of the aircraft is considered to be unknown and 
time varying which makes the tracking problem 
significantly nonlinear. Therefore, this problem may 
be an appropriate one to validate the performance of 
the proposed Q adaptive information filter. 

3.1 System Dynamics 

The dynamic equation of the above mentioned 
tracking problem is presented below. The turn rate 
of the aircraft being unknown it is modelled as a 
state and augmented with the state vector of the 
system model. As knowledge about the nature of 
variation of the unknown turn is unavailable the 
augmented parameter is considered to follow a 
simple random walk model. The dynamic model is 
taken from the work of (Jia,2013). 
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(46) 

where the state vector 
[ ]Tkyyxxk kkkk

vpvp ωξ = ; 
kxp and 

kyp are the 

position in x and y coordinate; 
kxv and 

kyv  are the 

corresponding velocity components at the instant k. 
τ indicates the time interval between two 
consecutive measurements. 

kw  is zero mean 

Gaussian noise (white) which indicates the modeling 
error. The process noise for this noise sequence is 
considered as 
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Note, that the element ( )5,5kQ  is the noise 

covariance of corresponding augmented parameter, 
i.e., turn rate. As the turn rate is unknown and time 
varying the accurate knowledge of q is unavailable 
and has to be assumed for traditional non adaptive 
information filter. However, for simulation study we 
have considered ( )212 s rad10323.1 −−×=q to generate 

the true state trajectories. 
The trajectories of the aircraft are tracked by the 

fusion of the bearing angle signal from two tracking 
radars located in two different places.  The 
measurement equation can be represented as 

2,1tan 1 =+
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−
= − ζθ ζ

ζ

ζ
ζ

k
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k v
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ζ indicates position of the thζ radar.  

;10;10 4141 mpmp
refref xy −=−= mpmp

refref xy
4242 10;10 ==

. The zero mean measurement noise (Gaussian) has 

covariances ( )2

1 30mradR = and ( )2

2 40mradR = . 

The interval between two successive measurements, 
sec1=τ . 

3.2 Simulation Procedure 

The proposed filter for sensor fusion has been 
evaluated with help of an extensive Monte Carlo 
simulation with 10000 runs. True state trajectories 
are generated with an initial state 

[ ]Tx 111
0 s rad05235.0ms0m1000ms300m1000 −−− −=  

and the unknown element qtrue .The filter is 
initialized with a Gaussian prior with mean 0x  and 

0̂P  , where  [ ]( )4
0 101010010100ˆ −= diagP . As 

the element qtrue is practically unknown, we assume 
qfilter to be 20 times higher qtrue during initialization 
of the filter. The choice of a high qfilter is justified as 
it indicates high degree of uncertainty about the 
nature of variation of unknown time varying turn 
rate. 

Note that only the element of Q which is 
associated with the turn rate is unknown while the 
other elements are known. Therefore, we need to 
adapt the element of Q related to turn rate leaving 
the other known element frozen at the truth value. It 
can be verified from the derivation of adapted Q that 

partial differential is taken with respect to each 
diagonal element of Q. Therefore, the adaptation 
formula can easily be reformulated only for the 
unknown elements. More details are provided in 
(Dey, 2014). 

Root means square error (RMSE) for position, 
velocity and turn rate are computed for performance 
analysis of the proposed filter. The RMSE for 
position and velocity are computed using the 
formula given in (Jia, 2013). 

( ) ( )
=







 −+−=

mcN

i
ikikikik

mcN
RMSE

1

2

,,

2

,,
ˆˆ1

lljj eξeξeξeξ  (49) 

where j=1 and l=3 for RMSE of position 
estimation. For RMSE of velocity estimation j=2 
and l=4. RMSE for turn rate estimation is obtained 
with j=5 and replacing the unit vector le  by a zero 

vector. 
Further investigation with this tracking problem 

revealed that this particular bearing only tracking 
problem is susceptible to track losses because of its 
measurement equation. It has been considered that 
the turn rate is unknown and time varying. As a 
consequence the trajectory of the aircraft become 
such that the difference between the bearing angle 
from two different radars may either be negligibly 
small or become closer to π . Practically the line of 
sight of two radars does not intersect each other to 
find the object in some of such situations. 
Consequently the measurement loses its uniqueness 
of information as the aircraft tracked by the radar 
cannot be specifically located in the atmosphere with 
the measured bearing angles. It is to be noted that in 
the work of (Jia, 2013) which has considered the 
same tracking problem track loss phenomenon has 
not been discussed. The authors have presented a 
representative run for illustration where track loss 
occurs for the non adaptive filter in ideal case when 
knowledge of process noise covariance is available. 
The performance of the proposed filter has also been 
compared to its non adaptive counter part in context 
of its susceptibility to track losses. To detect the 
occurrence of track loss a condition has been 
considered as given below. 

( ) ( ) myyxx kkkk 800ˆˆ 22 ≥−+−
∞

 (50) 

If the condition given by (50) is satisfied it is 
understood that the estimated trajectory fails to track 
the true trajectory of the aircraft. Such a situation for 
a representative run is illustrated by Figure 1 where 
in the ideal case the non adaptive DDIF with known 
Q fails to track the trajectory. 
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In case of Monte Carlo simulation the track loss 
cases are detected and those error sequences are 
omitted while calculating the RMS errors. The track 
loss count from 10000 Monte Carlo run are also 
presented for each filter in percentage. 

 

Figure 1: A representative run to illustrate track loss for 
the ideal case when non adaptive DDIF has known Q. 
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Figure 2: Comparison of RMS error (position estimation) 
of ADDIF & DDIF for 10000 MC runs. 
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Figure 3: Comparison of RMS error (velocity estimation) 
of ADDIF & DDIF for 10000 MC runs. 

0

1

2

3

4

5

0 20 40 60 80 100

time (sec)

R
M

S
E

 -
 t

u
rn

 r
at

e 
(d

eg
/s

ec
)

ADDIF
DDIF (Q known)
DDIF (Q unknown)

 

Figure 4: Comparison of RMS error (turn rate estimation) 
of ADDIF & DDIF for 10000 MC runs. 
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Figure 5: Plot of estimated process noise covariance (Q5,5) 
for a representative run. 

 

Figure 6: Tracking performance of ADDIF and non 
adaptive DDIF with unknown Q for a run. 

3.3 Simulation Results 

From the results of Monte Carlo simulation, 
performance of proposed ADDIF is compared with 
that of non adaptive DDIF in the situation when the 
turn rate of the aircraft is unknown and time varying. 
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 It has been observed from Figure 2, Figure 3 
and Figure 4 that the performance of ADDIF is 
substantially superior to that of non adaptive 
DDIF as the RMSE for all three states 
converged to a lower steady state value within 
comparatively less time. RMSE of non 
adaptive DDIF deteriorates as the Q remains 
unknown due to unknown turn rate. 

 It is to be also pointed out that though the 
elements of Q related to position and velocity 
are known RMSE of position and velocity for 
the non adaptive DDIF is degraded because of 
the implicit influence of poorly estimated turn 
rate. 

 Figure 5 indicates that for ADDIF the unknown 
process noise element is converged to the truth 
value in about 30 sec. 

 The RMSE results of ADDIF are also 
compared with non adaptive DDIF in the ideal 
situation when q is known only to the latter. 
Though this comparison may sound unusual, 
this comparison illumines on how far the 
performance ADDIF even with unknown Q is 
close to the performance of traditional filter in 
ideal situation with known Q. It is 
demonstrated that the RMSE of ADDIF for all 
the states are very closed to that nature of 
RMSE of non adaptive filter in ideal condition. 
The initial mismatch in RMSE is because of 
the time taken for adapted Q to converge. 

 It is also found from the Monte Carlo 
simulation that the track loss cases cannot be 
ruled out even for the ideal situation when the 
non adaptive DDIF has the knowledge of Q. In 
the MC simulation 1.7% of track loss has been 
observed for the ideal case. When Q is 
unknown, the percentage of track loss for 
ADDIF is 2.2% and that for non adaptive 
DDIF is 15%. The track loss percentage for 
ADDIF is comparable with the ideal case and 
substantially low compared its non adaptive 
version which is prone to track loss cases. 

These observations indicate the superiority of 
ADDIF over non adaptive DDIF when Q remains 
unknown for parametric uncertainties. 

4 CONCLUSIONS 

An Adaptive Divided Difference Information filter 
has been proposed for multiple sensor fusion in face 
of unknown parameter variation and exemplified 
with the help of an aircraft tracking problem. The 

proposed filter is found to carry out multiple sensor 
estimation successfully by online adaptation of 
process noise covariance (Q) where the knowledge 
of Q remains unavailable due to parametric 
uncertainty. The adapted Q from the filter converges 
on the true value of Q and continues to track it for 
subsequent time. The results from Monte Carlo 
study indicate that the RMS error performance of the 
proposed filter, as expected, is significantly superior 
to the non adaptive Divided Difference Information 
filter in face of unknown Q. Because of the 
capability of adaptation, flexibility for multiple 
sensor estimation and good error settling 
performance the proposed filter may be a 
recommended for multiple sensor fusion for the 
systems affected by unknown parameter variation. 
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