Adaptive Solution of the Wave Equation
Václav Valenta, Gabriela Necasová, Jirí Kunovský, Václav Šátek, Filip Kocina
2015
Abstract
The paper focuses on the adaptive solution of two-dimensional wave equation using an adaptive triangulation update based on a posteriori error estimation. The a posteriori error estimation is based on the Gradient super-approximation method which is based on works of J. Dalík et al that is briefly explained. The Modern Taylor Series Method (MTSM) used for solving a set of ordinary differential equations is also explained. The MTSM adapts to the required accuracy by using a variable number of Taylor Series terms. It possible to use the MTSM to solve wave equation in conjunction with Finite Difference Method (FDM).
References
- Ainsworth, M. and Oden, J. T. (1997). A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1):1-88.
- Babus?ka, I. and Rheinboldt, W. C. (1978). A-posteriori error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12(10):1597-1615.
- Dalík, J. (2008). Matematika, numerické metody.
- Dalík, J. (2010). Averaging of directional derivatives in vertices of nonobtuse regular triangulations. Numerische Mathematik, 116(4):619-644.
- Dalík, J. (2012). Approximations of the partial derivatives by averaging. Central European Journal of Mathematics, 10(1):44-54.
- Dalík, J. and Valenta, V. (2013). Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements. Central European Journal of Mathematics, 11(4):597-608.
- Filip Kocina, Jir?í KunovskÉ, M. M. G. N. A. S. and S? átek, V. (2014). New trends in taylor series based computations.
- Fuchs, G., S? átek, V., Vope?nka, V., KunovskÉ , J., and Kozek, M. (2013). Application of the modern taylor series method to a multi-torsion chain. Simulation Modelling Practice and Theory, 2013(33):89-101.
- Gabriela Nec?asová, Václav S? átek, J. K. J. C. and Veigend, P. (2015). Taylor series based differential formulas. In MATHMOD 2015, Vienna, pages 389-390.
- KunovskÉ , J. (1995). Modern Taylor Series Method. Habilitation work, Brno University of Technology, Brno.
- KunovskÉ , J. (2014). High performance computing - tksl software.
- R. Barrio, M. Rodríguez, A. A. and Blesa, F. (2011). Breaking the limits: the taylor series method. Applied mathematics and computation, 217(20):7940-7954.
- R. Barrio, F. B. and Lara, M. (2005). Vsvo formulation of the taylor method for the numerical solution of odes. Computers & Mathematics with Applications, 50(1):93-111.
- Satek, V., KunovskÉ , J., Kraus, M., and Kopriva, J. (2009). Automatic method order settings. In Computer Modelling and Simulation, 2009. UKSIM'09. 11th International Conference on, pages 117-122. IEEE.
- Strikwerda, J. (1989). Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, New York, NY.
- Verfü rth, R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1):67-83.
Paper Citation
in Harvard Style
Valenta V., Necasová G., Kunovský J., Šátek V. and Kocina F. (2015). Adaptive Solution of the Wave Equation . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 154-162. DOI: 10.5220/0005539401540162
in Bibtex Style
@conference{simultech15,
author={Václav Valenta and Gabriela Necasová and Jirí Kunovský and Václav Šátek and Filip Kocina},
title={Adaptive Solution of the Wave Equation},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2015},
pages={154-162},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005539401540162},
isbn={978-989-758-120-5},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Adaptive Solution of the Wave Equation
SN - 978-989-758-120-5
AU - Valenta V.
AU - Necasová G.
AU - Kunovský J.
AU - Šátek V.
AU - Kocina F.
PY - 2015
SP - 154
EP - 162
DO - 10.5220/0005539401540162