Adaptive Solution of the Wave Equation

Václav Valenta, Gabriela Necasová, Jirí Kunovský, Václav Šátek, Filip Kocina

2015

Abstract

The paper focuses on the adaptive solution of two-dimensional wave equation using an adaptive triangulation update based on a posteriori error estimation. The a posteriori error estimation is based on the Gradient super-approximation method which is based on works of J. Dalík et al that is briefly explained. The Modern Taylor Series Method (MTSM) used for solving a set of ordinary differential equations is also explained. The MTSM adapts to the required accuracy by using a variable number of Taylor Series terms. It possible to use the MTSM to solve wave equation in conjunction with Finite Difference Method (FDM).

References

  1. Ainsworth, M. and Oden, J. T. (1997). A posteriori error estimation in finite element analysis. Computer Methods in Applied Mechanics and Engineering, 142(1):1-88.
  2. Babus?ka, I. and Rheinboldt, W. C. (1978). A-posteriori error estimates for the finite element method. International Journal for Numerical Methods in Engineering, 12(10):1597-1615.
  3. Dalík, J. (2008). Matematika, numerické metody.
  4. Dalík, J. (2010). Averaging of directional derivatives in vertices of nonobtuse regular triangulations. Numerische Mathematik, 116(4):619-644.
  5. Dalík, J. (2012). Approximations of the partial derivatives by averaging. Central European Journal of Mathematics, 10(1):44-54.
  6. Dalík, J. and Valenta, V. (2013). Averaging of gradient in the space of linear triangular and bilinear rectangular finite elements. Central European Journal of Mathematics, 11(4):597-608.
  7. Filip Kocina, Jir?í KunovskÉ, M. M. G. N. A. S. and S? átek, V. (2014). New trends in taylor series based computations.
  8. Fuchs, G., S? átek, V., Vope?nka, V., KunovskÉ , J., and Kozek, M. (2013). Application of the modern taylor series method to a multi-torsion chain. Simulation Modelling Practice and Theory, 2013(33):89-101.
  9. Gabriela Nec?asová, Václav S? átek, J. K. J. C. and Veigend, P. (2015). Taylor series based differential formulas. In MATHMOD 2015, Vienna, pages 389-390.
  10. KunovskÉ , J. (1995). Modern Taylor Series Method. Habilitation work, Brno University of Technology, Brno.
  11. KunovskÉ , J. (2014). High performance computing - tksl software.
  12. R. Barrio, M. Rodríguez, A. A. and Blesa, F. (2011). Breaking the limits: the taylor series method. Applied mathematics and computation, 217(20):7940-7954.
  13. R. Barrio, F. B. and Lara, M. (2005). Vsvo formulation of the taylor method for the numerical solution of odes. Computers & Mathematics with Applications, 50(1):93-111.
  14. Satek, V., KunovskÉ , J., Kraus, M., and Kopriva, J. (2009). Automatic method order settings. In Computer Modelling and Simulation, 2009. UKSIM'09. 11th International Conference on, pages 117-122. IEEE.
  15. Strikwerda, J. (1989). Finite Difference Schemes and Partial Differential Equations. Chapman & Hall, New York, NY.
  16. Verfü rth, R. (1994). A posteriori error estimation and adaptive mesh-refinement techniques. Journal of Computational and Applied Mathematics, 50(1):67-83.
Download


Paper Citation


in Harvard Style

Valenta V., Necasová G., Kunovský J., Šátek V. and Kocina F. (2015). Adaptive Solution of the Wave Equation . In Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH, ISBN 978-989-758-120-5, pages 154-162. DOI: 10.5220/0005539401540162


in Bibtex Style

@conference{simultech15,
author={Václav Valenta and Gabriela Necasová and Jirí Kunovský and Václav Šátek and Filip Kocina},
title={Adaptive Solution of the Wave Equation},
booktitle={Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,},
year={2015},
pages={154-162},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005539401540162},
isbn={978-989-758-120-5},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 5th International Conference on Simulation and Modeling Methodologies, Technologies and Applications - Volume 1: SIMULTECH,
TI - Adaptive Solution of the Wave Equation
SN - 978-989-758-120-5
AU - Valenta V.
AU - Necasová G.
AU - Kunovský J.
AU - Šátek V.
AU - Kocina F.
PY - 2015
SP - 154
EP - 162
DO - 10.5220/0005539401540162