Amplitude Modulation by Superposition of Independent Light Sources

Gilbert Johannes Martin Forkel, Peter Adam Hoeher

2015

Abstract

Visible light communication (VLC) is a promising alternative to radio waves, when high data rates are required over short distances. Using lighting equipment for communication offers very high receive power values without consuming additional energy than already required for illuminating the environment. The bandwidth restriction of the employed light-emitting diode (LED) light sources is one limiting factor to exploiting the channels potential capacity. In this paper, we propose spatially distributed modulation schemes to increase the data rate by switching the LEDs of the lighting equipment individually. Towards this goal, three different techniques for superposition of independent light sources are compared.

References

  1. Cossu, G., Khalid, A. M., Choudhury, P., Corsini, R., and Ciaramella, E. (2012). 3.4 Gbit/s visible optical wireless transmission based on RGB LED. Optics Express, 20(26):B501-B506.
  2. Elgala, H., Mesleh, R., and Haas, H. (2010). An LED model for intensity-modulated optical communication systems. IEEE Photonics Technology Letters, 22(11):835-837.
  3. Komine, T., Lee, J., Haruyama, S., and Nakagawa, M. (2009). Adaptive equalization system for visible light wireless communication utilizing multiple white LED lighting equipment. IEEE Transactions on Wireless Communications, 8(6):2892-2900.
  4. Li, J. F., Huang, Z. T., Zhang, R. Q., Zeng, F. X., Jiang, M., and Ji, Y. F. (2013). Superposed pulse amplitude modulation for visible light communication. Optics Express, 21(25):31006-31011.
  5. Minh, H. L., O'Brien, D., Faulkner, G., Zeng, L., Lee, K., Jung, D., Oh, Y., and Won, E. T. (2009). 100-Mb/s NRZ visible light communications using a postequalized white LED. IEEE Photonics Technology Letters, 21(15):1063-1065.
  6. O'brien, D., Zeng, L., Le-Minh, H., Faulkner, G., Walewski, J., and Randel, S. (2008). Visible light communications: Challenges and possibilities. In IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications, 2008., pages 1-5.
  7. Tsonev, D., Chun, H., Rajbhandari, S., McKendry, J., Videv, S., Gu, E., Haji, M., Watson, S., Kelly, A., Faulkner, G., Dawson, M., Haas, H., and O'Brien, D. (2014). A 3-Gb/s single-LED OFDM-based wireless VLC link using a gallium nitride µLED. IEEE Photonics Technology Letters, 26(7):637-640.
  8. Vuc?ic, J., Kottke, C., Nerreter, S., Habel, K., Buttner, A., Langer, K.-D., and Walewski, J. (2010a). 230 Mbit/s via a wireless visible-light link based on OOK modulation of phosphorescent white LEDs. In Optical Fiber Communication (OFC), collocated National Fiber Optic Engineers Conference, 2010, pages 1-3.
  9. Vuc?ic, J., Kottke, C., Nerreter, S., Langer, K.-D., and Walewski, J. W. (2010b). 513 Mbit/s visible light communications link based on DMT-modulation of a white LED. Journal of Lightwave Technology, 28(24):3512-3518.
Download


Paper Citation


in Harvard Style

Martin Forkel G. and Hoeher P. (2015). Amplitude Modulation by Superposition of Independent Light Sources . In Proceedings of the 6th International Conference on Optical Communication Systems - Volume 1: OPTICS, (ICETE 2015) ISBN 978-989-758-116-8, pages 29-35. DOI: 10.5220/0005542700290035


in Bibtex Style

@conference{optics15,
author={Gilbert Johannes Martin Forkel and Peter Adam Hoeher},
title={Amplitude Modulation by Superposition of Independent Light Sources},
booktitle={Proceedings of the 6th International Conference on Optical Communication Systems - Volume 1: OPTICS, (ICETE 2015)},
year={2015},
pages={29-35},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005542700290035},
isbn={978-989-758-116-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 6th International Conference on Optical Communication Systems - Volume 1: OPTICS, (ICETE 2015)
TI - Amplitude Modulation by Superposition of Independent Light Sources
SN - 978-989-758-116-8
AU - Martin Forkel G.
AU - Hoeher P.
PY - 2015
SP - 29
EP - 35
DO - 10.5220/0005542700290035