varying the model and introducing a “lahar source”;
The immediate melting of the Cotopaxi icecap
descends from the worst hypothesis among the
possible ones, regarding the first phase of the
phenomenon; it is important to test the other
hypotheses.
Anyway, the results of these preliminary
simulations demonstrate that the CA model
LLUNPIY is working appropriately, if we consider
the partial, sometime rough data concerning the
event (Mothes et al., 2014) and its possible
improvements.
The simulations were acceptable in terms of
reproducing the global dynamics of the events, such
as velocity and height of detrital flow. Simulated
lahar path and invaded area agree with real (partially
reconstructed) one.
Times are not respected: in simulations, lahars
reached Latacunga about 30 minutes later than
reported in the chronicles of the time (Wolf, 1878).
This discrepancy could depend on some imprecision
of chronicles or on the increased length of paths in
the simulation because of space discretisation or
both; we will investigate such a problem by
considering these different viewpoints.
Our main future goal concerns the simulation of
the overall phenomenon, considering the total icecap
melting or partial melting by the effect of pyroclastic
bombs. If data will be available, we plan simulating
lahars toward the Quito region and the production of
hazard scenarios for possible new eruptions of
Cotopaxi volcano.
ACKNOWLEDGEMENTS
The authors are grateful to Patricia Mothes,
Researcher at IGEPN for obtaining data concerning
the Cotopaxi volcano and 1877 eruption, useful
information, advices and comments.
The authors thank William Spataro and Maria
Vittoria Avolio for critical revision of the
manuscript, suggestions and useful advices.
REFERENCES
Avolio M. V., Crisci, G. M., Di Gregorio, S., Rongo, R.,
Spataro, W. G., Trunfio, A., 2006. SCIARA γ2: an
improved Cellular Automata model for Lava Flows
and Applications to the 2002 Etnean crisis. Computers
& Geosciences, vol 32.
Avolio, M. V., Crisci, G. M., D’Ambrosio, D., Di
Gregorio, S., Iovine, G., Rongo, R., Spataro, W., 2003.
An extended notion of Cellular Automata for surface
flows modelling. WSEAS Transactions on Computers.
Avolio, M. V., Di Gregorio, S., Lupiano, V., Mazzanti, P.,
2013. SCIDDICA-SS3: A New Version of Cellular
Automata Model for Simulating Fast Moving
Landslides. The Journal of Supercomputing,65.
SPRINGER.
Avolio, M. V., Di Gregorio, S., Lupiano, V., Mazzanti, P.,
Spataro, W., 2010. Application context of the
SCIDDICA model family for simulations of flow-like
landslides. In Proceedings of the 2010 international
conference on scientific computing, Las Vegas (USA).
Avolio, M. V., Di Gregorio, S., Spataro, W., Trunfio,
G.A., 2012. Theorem about the algorithm of
minimization of differences for multicomponent
cellular automata. In ACRI 2012, SPRINGER
VERLAG.
Avolio, M. V., Lupiano, V., Mazzanti, P., Di Gregorio, S.,
2008. Modelling combined subaerial-subaqueous
flow-like landslides by cellular automata. In ACRI
2008. SPRINGER VERLAG.
Avolio, M.V ., Lupiano, V., Mazzanti, P., Di Gregorio, S.,
2009. A Cellular Automata Model for Flow-type
Landslide with Simulations of Subaerial and
Subaqueous cases. In Proceedings of EnviroInfo 2009.
Berlin, Germany, vol. 1, p. 131-140.
Barclay, J., Alexander, J., Susnik, J., 2007. Rainfall-
induced lahars in the Belham Valley, Montserrat, West
Indies. Journal of the Geological Society, London 164.
Cáceres B., Ramírez J., Francou B., Eissen J.P., Taupin J.
D., Jordan E., Ungerechts L., Maisincho L., Barba D.,
Cadier E., Bucher R., Peñafiel A., Samaniego P.,
Mothes P., 2004. Determinación del volumen del
casquete de hielo del volcán Cotopaxi. Informe
INAMHI, IRD, IG-EPN, INGEOMINAS.
Costa, J. E., 2004. Hydraulic modeling for lahar hazards at
Cascades volcanoes. Environmental and Engineering
Geosciences £.
Crisci G. M., Di Gregorio S., Rongo R., Spataro W., 2005.
PYR: a Cellular Automata model for pyroclastic flows
and application to the 1991 Mt. Pinatubo eruption,
Future Generation Computer Systems, 21.
D’Ambrosio, D., Di Gregorio, S., Gabriele, S., Gaudio, R.,
2001. A Cellular Automata Model for Soil Erosion by
Water. Physics and Chemistry of the Earth, EGS, Part
B 26(1).
Di Gregorio, S., Serra R., 1999. An empirical method for
modelling and simulating some complex macroscopic
phenomena by cellular automata. Future Generation.
Computer Systems.
Hoblitt, R. P., Miller, C. D., Scott, W. E., 1987. Volcanic
Hazards with Regard to Siting Nuclear-Power Plants
in the Pacific Northwest. U.S. Geological Survey
Open-File Report.
Lupiano V., Avolio M. V., Anzidei M., Crisci G. M., Di
Gregorio S., 2014a. Susceptibility Assessment of
Subaerial (and/or) Subaqueous Debris-Flows in
Archaeological Sites, Using a Cellular Model. In
Lollino G. et Al. (Eds.) Engineering Geology for
Society and Territory, - Volume 8, pp 405-408
LLUNPIYPreliminaryExtensionforSimulatingPrimaryLahars-Applicationtothe1877CataclysmicEventofCotopaxi
Volcano
375