REFERENCES
Chambolle, A., & Pock, T., 2011. A first-order primal-dual
algorithm for convex problems with applications to
imaging. Journal of Mathematical Imaging and Vision,
vol. 40, no. 1, pp. 120–145.
Cho, T. S., Joshi, N., Zitnick, C. L., Sing Bing Kang,
Szeliski, R., & Freeman, W.T., 2010. A content-aware
image prior IEEE Conference on Computer Vision and
Pattern Recognition, pp. 169-176.
Cho, T. S., Zitnick, C. L., Joshi, N., Sing Bing Kang,
Szeliski, R., & Freeman, W.T., 2012. Image restoration
by matching gradient distributions. IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 34,
no. 4, pp. 683-694.
Chung, S.-W., Kim, B.-K., & Song, W.-J., 2010. Removing
chromatic aberration by digital image processing.
Optical Engineering, vol. 49, no. 6, 067002.
Davis, A., & Kuhnlenz, F., 2007. Optical design using
Fresnel lenses - basic principles and some practical
examples. Optik & Photonik, vol. 2, no. 4, pp. 52–55.
Fang, Y. C., Liu, T. K., MacDonald, J., Chou, J. H., Wu, B.
W., Tsai, H. L., & Chang, E. H., 2006. Optimizing
chromatic aberration calibration using a novel genetic
algorithm. Modern Optics, v. 53, no. 10, pp. 1411-1427.
Farrar, N. R., Smith, A. H., Busath, D. R., & Taitano, D.,
2000. In situ measurement of lens aberration. Proc.
SPIE, vol. 4000, March, pp. 18-29.
Gonzalez, R. C., & Woods, R. E., 2001. Digital Image
Processing, Second Edition, Prentice Hall, 2001.
Heide, F., Rouf, M., Hullin, M. B., Labitzke, B., Heidrich,
W., & Kolb, A., 2013. High-quality computational
Imaging Through Simple Lenses. ACM Transactions
on Graphics, vol. 32, no. 5, article No. 149.
Kang, S. B., 2007. Automatic removal of chromatic
aberration from a single image. Computer Vision and
Pattern Recognition, 2007, pp. 1-8.
Limare, N., Petro, A. B., Sbert, C., & Morel, J. M., 2011.
Retinex Poisson equation: a model for color perception.
Image Processing On Line.
Maxwell, B. A., Friedhoff, R. M., & Smith, C. A., 2008. A
bi-illuminant dichromatic reflection model for
understanding images. Computer Vision and Pattern
Recognition, IEEE Conference on, pp. 1–8.
Meyer-Arendt, J. R., 1995. Introduction to Classical and
Modern Optics. Prentice Hall.
Millan, M. S., Oton, J., & Perez-Cabre, E., 2006. Chromatic
compensation of programmable Fresnel lenses. Opics
Express, vol. 14, no. 13, pp. 6226-6242.
Nikonorov, A., Bibikov, S., & Fursov V., 2010. Desktop
supercomputing technology for shadow correction of
color images. Proceedings of the 2010 International
Conference on Signal Processing and Multimedia
Applications (SIGMAP), pp. 124-140.
Nikonorov, A., Bibikov, S., Yakimov, P., & Fursov, V.,
2014. Spectrum shape elements model to correct color
and hyperspectral images. 8th IEEE IAPR Workshop on
Pattern Recognition in Remote Sensing, 2014, pp. 1-4.
Powell, I., 1981. Lenses for correcting chromatic aberration
of the eye. Applied Optics, v. 20, no. 24, pp. 4152–4155.
Shih, Y., Guenter, B., & Joshi N., 2012. Image
enhancement using calibrated lens simulations.
Computer Vision – ECCV 2012, pp. 42-56.
Soifer, V. A. (ed.), 2012. Computer Design of Diffractive
Optics. Woodhead Publishing.
ComputationalCorrectionforImagingthroughSingleFresnelLenses
75