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Abstract: Recent advances in static and dynamic program analysis resulted in tools capable to detect various types of 
security bugs in the Applications under Test (AUT). However, any such analysis is designed for a priori 
specified types of bugs and it is characterized by some rate of false positives or even false negatives and 
certain scalability limitations. We present a new analysis and source code classification technique, and a pro-
totype tool aiming to aid code reviews in the detection of general information flow dependent bugs. Our 
approach is based on classifying the criticality of likely exploits in the source code using two measuring 
functions, namely Severity and Vulnerability. For an AUT, we analyse every single pair of input vector and 
program sink in an execution path, which we call an Information Block (IB). A classification technique is 
introduced for quantifying the Severity (danger level) of an IB by static analysis and computation of its En-
tropy Loss. An IB’s Vulnerability is quantified using a tainted object propagation analysis along with a Fuzzy 
Logic system. Possible exploits are then characterized with respect to their Risk by combining the computed 
Severity and Vulnerability measurements through an aggregation operation over two fuzzy sets. An IB is 
characterized of a high risk, when both its Severity and Vulnerability rankings have been found to be above 
the low zone. In this case, a detected code exploit is reported by our prototype tool, called Entroine. The 
effectiveness of the approach has been tested by analysing 45 Java programs of NIST’s Juliet Test Suite, 
which implement 3 different common weakness exploits. All existing code exploits were detected without 
any false positive. 

1 INTRODUCTION 

Vulnerabilities of an Application under Test (AUT) 
can be detected using advanced techniques of static 
and dynamic analysis. These techniques have been 
proven effective in analysing code for a priori speci-
fied flaws (e.g. Time Of Check, Time Of Use errors, 
widely known as TOCTOUs), but they do not go far 
enough in the detection of a previously unspecified 
form of information flow dependent flaws. Moreover, 
the National Institute of Software and Technology 
(NIST) published a report (Okun et al., 2013), which 
indicates that most tools still generate relatively high 
numbers of false negatives and false positives, 
whereas their analysis scalability to very big pro-
grams is questionable. There are though many tools 
that shine on specific types of vulnerabilities, but it is 
clear that there is no overall “best” tool with a high 

detection rate in multiple exploit categories (National 
Security Agency (NSA), 2011) (Rutar et al., 2004).  

We elaborate on an analysis approach based on 
the classification and the criticality assessment of the 
program’s execution paths, with each path represent-
ing a sequence of program points from one location 
to another location of the program’s control flow 
graph. Our technique has been implemented in En-
troine, a prototype tool for the analysis of Java code. 
Entroine analyses the AUT code for possible flaws by 
classifying the execution paths based on their Entropy 
Loss, thus producing data, which are processed by a 
mathematical fuzzy logic system. More precisely, En-
troine processes structures called information blocks 
(IBs), with each of them containing information for 
execution paths, variables and program instructions 
on the paths. Only a subset of all possible execution 
paths is examined: the paths from locations associated 
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with input vectors to locations corresponding to infor-
mation flow sinks. IBs are classified in two different 
groups of sets as follows: 

 the Severity sets that quantify the danger level for 
the execution paths (the impact that an exploit 
would have, if it would be manifested in the path);  

 the Vulnerability sets that quantify detected vul-
nerabilities based on a variable usage analysis 
(tainted object propagation and validation of san-
itization checks, in which the data context of var-
iables is checked). 

The method consists of the following components: 
i. A static analysis, based on the BCEL library 

(BCEL, 2003) (Dahm et al., 2003), creates the 
control flow graph that is then parsed to get infor-
mation about variable usages. It is thus possible to 
detect input data vectors, control-flow locations 
and instructions that enforce context checks on 
variable data. Entroine then maps the execution 
paths for the AUT variables and, more specifi-
cally, only those locations, where the program ex-
ecution can follow different paths (execution flow 
branching points).  

ii. A classification approach that combines output 
from (a) to create IBs. Each IB is classified using 
statistical Entropy Loss and the two fuzzy mem-
bership sets, namely Severity and Vulnerability. 

iii. A Fuzzy Logic system for quantifying the overall 
Risk for each IB, based on linguistic variables, 
and Severity and Vulnerability classification rat-
ings. 

The main contributions of this paper are summarized 
as follows: 
1. We introduce a program analysis technique for 

our classification system. Based on the control 
flow graph and our Fuzzy Logic ranking system 
only a limited number of execution paths and 
statements have to be analysed. 

2. We propose a Risk classification of program loca-
tions using two membership functions, one for the 
identified Severity (Entropy Loss) and another 
one for the Vulnerability level. 

3. We present our prototype tool. By using the Vul-
nerability and Severity classifications, we realized 
that the number of false positives for our detection 
technique is lowered. In addition, Entroine 
warned for elevated danger levels in program lo-
cations where a false negative could have oc-
curred.  

4. We provide test results from applying Entroine to 
the Juliet Test Suite (Boland and Black, 2012) that 
has been proposed by NIST to study the effective-

ness of code analysis tools (National Security 
Agency (NSA), 2011). Entroine detected all com-
mon weaknesses used upon, without having re-
ported any false positive. 

In Section 2, we report recent results in related re-
search. In Section 3, we expose the theoretical under-
pinnings of our method. Section 4 provides technical 
details for the implementation of our method in En-
troine and section 5 presents our experiments and re-
ports metrics and detection coverage in all tests. 

2 RELATED WORK 

Previously proposed analysis techniques based on 
tainted object propagation such as the one in (Livshits 
and Lam, 2005) mostly focus on how to formulate 
various classes of security vulnerabilities as instances 
of the general taint analysis problem. These ap-
proaches do not explicitly model the program’s con-
trol flow and it is therefore possible to miss-flag san-
itized input, thus resulting in false positives. Further-
more, there is no easy general approach to avoid the 
possibility of false negatives. This type of analysis 
does not suffer a potential state space explosion, but 
its scalability is directly connected to the analysis sen-
sitivity characteristics (path and context sensitivity) 
and there is an inherent trade-off between the analysis 
scalability and the resulting precision/recall. 

Regarding well-known static analysis tools, it is 
worth to mention FindBugs (Hovemeyer and Pugh, 
2004), which is used to detect more than 300 code de-
fects that are usually classified in diverse categories, 
including those analysed by tainted object propaga-
tion. The principle of most of the FindBug’s bug de-
tectors is to identifying low-hanging fruits, i.e. to 
cheaply detect likely defects or program points where 
the programmer’s attention should be focused 
(Ayewah et al., 2008).  

Other tools, such as (CodePro, 2015), (UCDetec-
tor, 2015), (Pmd, 2015) and (Coverity, 2015) are 
well-known for their capability to detect numerous 
bugs, but related research in (Tripathi, 2014) has 
shown that their main focus is centred around specific 
bug types like null pointer exceptions, explicit im-
port-export and not those, for which a taint analysis is 
required (XSS, OS executions etc.). In (Tripathi and 
Gupta, 2014), a relatively low detection rate is re-
ported for many of the above mentioned tools for 
some variants of important bug types (null pointer ex-
ception, user injections and non-black final instance). 
To the best of our knowledge, none of the above men-
tioned tools implements a mechanism to cope with 
the possibility of false negatives.  
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Pixy (Jovanovic et al., 2010), a prototype imple-
menting a flow-sensitive, inter-procedural and con-
text-sensitive dataflow, alias and literal analysis, is a 
new tool that further develops pre-existing analyses. 
It mainly aims to detect cross-site scripting vulnera-
bilities in PHP scripts, but a false positive rate is at 
around 50% (i.e., one false positive for each detected 
vulnerability) has been reported and no mechanism 
has been implemented to mitigate the problem. 

Other researchers try to detect code flaws using 
program slicing. (Weiser, 1981) introduced a pro-
gram slicing technique and applied it to debugging. 
The main drawback is that the slice set often contains 
too many program entities, which in some cases can 
correspond to the whole program.  

(Zhang et al., 2006) presents a technique that uses 
a threshold to prune the computed backward slice. A 
limitation is that this technique does not account for 
the strength of the dependences between program en-
tities, nor the likelihood for each program entity to be 
a failure cause. Another limitation is that the slice sets 
can be sometimes very large. Finally, no information 
is provided by any of these techniques for how to start 
searching for a code flaw.  

Researchers in (Doupe et al., 2011), focus exclu-
sively on specific flaws found in web applications as 
in (Balzarotti et al., 2007), where various analysis 
techniques are combined to identify multi-module 
vulnerabilities.  

 

 
Figure 1: NIST’s command injection example. 

None of these techniques attempts to profile the 
danger level in the program’s behaviour. In (Ster-
giopoulos et al., 2012); (Stergiopoulos et al., 2013) 
and (Stergiopoulos et al., 2014), we have presented 
the APP_LogGIC tool for source case analysis, but 
we focused on logical errors instead of program ex-
ploits. and our ranking method was not based on a 
statistical classification of the source code. 

3 METHODOLOGY 

Let us consider the example shown in Figure 1 from 
the Juliet Test Suite, a collection of programs for test-
ing source code analyzers (Boland and Black, 2012).  

Example 1. Variable data in Figure 1 is assigned data 
originated from the source properties. 
GetProperty. Then, it is used in the sink instruc-
tion getRuntime().exec without being checked 
previously or having sanitized the variable’s contents, 
as it should have happened. Our method will detect 
and analyze the execution path starting from the in-
vocation of getProperty(“data”) and ending 
with the exec()call, thus revealing the exploit pre-
sent in the source code. 

Definition 1. Given the set T of all transitions in the 
control flow graph of an AUT, an information block 
IB is a structure, containing a set of instructions I and 
a set of transitions Ti  T enabled at the correspond-
ing program points, along with information about 
data assignments on variables used in sets I and Ti. 

Our method outputs a Risk value (ranging from 
one to five) that denotes the overall danger level of an 
IB. The Risk is quantified by means of a source code 
classification system using Fuzzy Logic to flag ex-
ploits (Cingolani and Alcala-Fdez, 2012). This clas-
sification technique aims to confront two important 
problems: the large data sets of the AUT analysis and 
the possible false positives and false negatives when 
trying to detect specific vulnerabilities. Regarding the 
first mentioned problem, the Entroine tool can help 
auditors to focus only to those instructions and paths 
that appear having a relatively high rating in its clas-
sification system. The second mentioned problem can 
be alleviated through Entroine’s ratings that imple-
ment general criteria, which take into account the pos-
sibility of an exploit in execution paths (Vulnerabil-
ity) and a path’s danger level (Severity). Two meas-
uring functions, namely Severity and Vulnerability 
create fuzzy sets reflecting gradually varying danger 
levels. Each IB gets a membership degree in these 
sets, which represents its danger level and it is thus 
classified within a broad taxonomy of exploits which 
is based on a wide variety of publications (Gosling et 
al., 2013);(Harold, 2006); (Mell et al., 2006). Mem-
bership sets act as code filters for the IBs. 

Example 2. Figure 2 below depicts the Entroine’s out-
put for the program of Figure 1. Our tool detected data 
entry points (input vectors) and the relevant execution 
path, stored in the “Lines Executed” field (line num-
bers correspond to lines inside the source code Class 
file, depicting the execution path’s instructions). 

public void bad() throws Throwable { 
String data = "", test = “”; 

/* FLAW: data from .properties */ 
data = properties.getProperty("data"); 
if(System.getProperty("os.name").in-

dexOf("win") >= 0) { 
String osCommand = "c:\\WINDOWS\\SYS-

TEM32\\cmd.exe /c dir ";} 
/*POTENTIAL FLAW: command injection */ 

Process proc = 
Runtime.getRuntime().exec(osCommand + 

data);} 
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Then, the IB has been classified in relevant Severity 
and Vulnerability ranks by analyzing checks and re-
lations between variables. Fig. 2’s Input Ranking de-
picts the rank assigned based on the input vector clas-
sification, in this case, the readLine()instruction. 
Similar, Sink ranking depicts the rank assigned in the 
sink instruction where the exploit manifests: a rank 5 
OS Injection exec() instruction. 
 

 

Figure 2: Information block example (from Entroine). 

In the following section, we describe in detail the 
way that the Severity and Vulnerability classification 
ranks are computed. 

3.1 Source Code Profiling for Exploit 
Detection 

Entroine classifies source code using two different 
classification mechanisms: Severity and Vulnerabil-
ity. Entroine aggregates results from both to produce 
an distinct, overall Risk value for dangerous code 
points. 

3.1.1 Severity 

For an information block IB, Severity(IB) 
measures the membership degree of its path π in a Se-
verity fuzzy set. Severity(IB) reflects the rela-
tive impact on an IB’s execution path π, if an exploit 
were to manifest on π. According to (Stoneburner and 
Goguen, 2002) by the  National Institute of Software 
and Technology (NIST), the impact of an exploit on 
a program’s execution can be captured by syntactical 
characteristics that determine the program’s execu-
tion flow, i.e. the input vectors and branch conditions 
(e.g. conditional statements). Variables used in each 

transition of the execution path are weighted based on 
how they affect the control flow. Thus, variables that 
directly affect the control flow or are known to mani-
fest exploits (e.g. they input data, used in branch con-
ditions or affect the system) are considered danger-
ous. 

Definition 2. Given the information block IB, with a 
set of variables and their execution paths, we define 
Severity as 

Severity(IB) = v ∈[0,5] 

measuring the severity of IB on a Likert-type scale 
from 1 to 5. 

Likert scales are a convenient way to quantify 
facts (Albaum, 1997) that in our case refer to a pro-
gram’s control flow. If an exploit were to manifest on 
an execution path within an IB, the scale-range cap-
tures the intensity of its impact in the AUT’s execu-
tion flow. Statistical Entropy Loss classifies execu-
tion paths and their information blocks in one of five 
Severity categories, one (1) through five (5). Catego-
ries are then grouped into Fuzzy Logic sets using la-
bels: high Severity (4-5), medium (3) or low (1 or 2). 

3.1.2 Entropy Loss as a Statistical Function 
for Severity Measurement 

Evaluation of the membership degree of each execu-
tion path in the Severity set can be based on a well -
defined statistical measure. To assign Severity ranks, 
continuous weights are estimated using Prior Entropy 
and Entropy Loss. Finally, a fuzzy relational classifier 
uses these estimations to establish correlations be-
tween Severity ranks and execution paths.  

Expected Entropy Loss, which is also called Infor-
mation Gain, is a statistical measure (Abramson, 
1963) that has been successfully applied to the prob-
lem of feature selection for information retrieval (Etz-
korn and Davis, 1997). Feature selection increases 
both effectiveness and efficiency, since it removes 
non-informative terms according to corpus statistics 
(Yang and Pederson, 1997).  

Our method is based on selected features, i.e. 
source code instructions, which are tied to specific 
types of vulnerabilities (section 4.2). For example, the 
exec() instruction is known to be tied to OS injec-
tion vulnerabilities. Thus, Entroine uses exec() as 
a feature to classify vulnerable IBs as a detected type 
of OS Injection. Expected entropy loss is computed 
separately for each information block. It ranks fea-
tures common in both positive and negative variable 
execution paths with lower values, but ranks features 
higher if they are effective discriminators of an ex-
ploit (Ugurel et al., 2002).  

Input Ranking: 4 
Sink Ranking: 5 

Starting at line: 54 
Source: getProperty 

Input into variable: data bad, test bad 
Sink method: exec 

Execution arguments: osCommand, data, 
Severity Rank#: 5 

Lines executed: 106 83 82 81 80 79 78 77 76 75 
73 62 60 57 56 54 

Dangerous variables: proc , test , data, 
Connections between the dangerous variables:

 proc <-- data 
Vulnerability Rank#: 4 
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This technique was also used for source code clas-
sification in (Glover et al., 2001) and (Ugurel et al., 
2002). Here, we use the same technique, in order to 
classify source code into danger levels.  

In the following paragraphs, we provide a brief 
description of the theory (Abramson, 1963). Let C be 
the event that indicates whether an execution path 
must be considered dangerous, depending on the 
path’s transitions, and let f be the event that the path 
does indeed contain a specific feature f (e.g. the exec() 
instruction). Let ̅ܥ and ݂̅	be their negations and Pr( ) 
their probability (computed as in section 4.3.1). The 
prior entropy is the probability distribution that ex-
presses how certain we are that an execution path be-
longs to a specific category, before feature f is taken 
into account: 

݁	 ൌ 	െ	ܲݎሺܥሻ	݈݃ܲݎሺܥሻ 	െ  ሻ	തܥ	ሺݎ݈ܲ݃	ሻ	തܥ	ሺݎܲ	

where lg is the binary logarithm (logarithm to the base 
2). The posterior entropy, when feature f has been de-
tected in the path is 

௙݁ 	ൌ 	െ	PrሺC	|	݂ሻ	lg	PrሺC	|݂ሻ 	
െ 	Prሺ	̅ܥ	|	݂ሻ	lg	Prሺ	̅ܥ	|	݂ሻ 

whereas the posterior entropy, when the feature is ab-
sent is 

݁௙	ഥ 	ൌ 	െ	PrሺC	|	݂̅ሻ	lg	PrሺC	|	݂̅ሻ 	
െ 	Prሺ	̅ܥ	|	݂ሻ̅	lg	Prሺ	̅ܥ	|	݂ሻ̅ 

Thus the expected overall posterior entropy is given 
by 

௙݁ Prሺ݂ሻ ൅ ݁௙	ഥ Pr	ሺ	݂̅	ሻ 

and the expected entropy loss for a given feature f is 

݁ െ ௙݁ Prሺ݂ሻ െ ݁௙	ഥ Pr	ሺ	݂̅	ሻ 

The expected entropy loss is always non-negative and 
higher scores indicate more discriminatory features. 

Example 3. Let us compute the expected Entropy 
Loss used for the Severity classification of the pro-
gram in Example 1. Our Severity function will clas-
sify the path’s features (input vectors, sinks, branch 
statements like exec() and getProperty()) ac-
cording to a taxonomy of features (Section 4.2). Five 
probabilities Pr(C) were computed, one for each of 
the five Severity ranks and the IB was classified at the 
Severity rank 4 (maximum of the 5 Pr(C)s). The 
IB’s prior entropy e was then calculated for the same 
ranks. Prior entropy represents the current classifica-
tion certainty of Entroine, i.e. the level of confidence 
that it has assigned the correct Severity rank. Finally, 
the entropy loss (information gain) was calculated for 
each one of the detected input vectors and sinks in the 

execution path, for the variable data. We are inter-
ested in the highest and the lowest observed Entropy 
Loss (Information Gain) values: 
1. The higher value of information gain is observed, 

the more the uncertainty for a dangerous security 
characteristic is lowered and the classification to 
a specific Rank category is therefore more robust. 
Also, a relatively high information gain coupled 
with a high probability Pr(C|f) for sanitization 
provides information about features within paths 
that lower the Vulnerability level. 

2. The lowest value of information gain (highest en-
tropy) provides information on the most wide-
spread and distributed security methods by show-
ing the level of danger diffused in the AUT’s ex-
ecution paths. 

Figure 3 below depicts the Entropy Loss output for 
the example path. The conclusion drawn from this 
output is the following: 
 The highest entropy loss (information gain) is de-

tected in method getProperty. This shows 
that getProperty is a defining characteristic 
for this Rank 5 exploit. 

 The lowest entropy loss in method exec() has 
highest probability of appearance, Pr(C)=1, which 
basically means that exec() is being used in all 
execution paths analyzed as potentially danger-
ous. This elevates the Severity level of the de-
tected exploit significantly, because exec() is 
prone to OS injection. 

 

 

Figure 3: OS injection – Entropy for Rank 5 category. 

3.1.3 Vulnerability 

Vulnerability sets define categories based on the type 
of detection and the method’s propagation rules and 
each category reveals the extent to which variable 
values are sanitized by conditional checks (Stone-
burner and Goguen, 2002). As a measuring function, 
Vulnerability assigns IBs into vulnerability sets thus 
quantifying how certain the tool is about an exploit 
manifesting in a specific variable usage. 

Prior path Entropy =   0.8112781
Source code Severity rank:    5 
Calculation exec. time:    2 seconds 
Entropy Loss for getInputStream – Rank 5: 

0.31127812 
Entropy Loss for getProperty - Rank 5: 

0.81127812 
Entropy Loss for exec in Rank 5:  0.0 
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Definition 3. Given the information block IB, with a 
set of variables and their execution paths, we define 
Severity as 

Vulnerability(IB) = v ∈[0,5] 

Ratings here also use a Likert scale (Albaum, 1997) 
from 1 to 5. Similarly to the Severity(IB) func-
tion, our fuzzy logic system classifies IBs in similar 
categories: “high” vulnerability, “medium” or “low”. 

3.1.4 Vulnerability Function - Object  
Propagation and Control Flow 
Heuristics 

Our control flow based heuristics for assigning Vul-
nerability ratings to information blocks are comple-
mented by a tainted object propagation analysis. 
Tainted object propagation can reveal various types 
of attacks that are possible due to user input that has 
not been (properly) validated (Livshits and Lam, 
2005). Variables holding input data (sources) are con-
sidered tainted. If a tainted object (or any other object 
derived from it) is passed as a parameter to an exploit-
able instruction (a sink) like the instructions executing 
OS commands we have a vulnerability case (Livshits 
and Lam, 2005). 

Variables and checks enforced upon them are an-
alysed for the following correctness criterion: all in-
put data should be sanitized before their use (Stone-
burner and Goguen, 2002). Appropriate checks show: 
(i) whether a tainted variable is used in sinks without 
having previously checked its values, (ii) if data from 
a tainted variable is passed along and (iii) if there are 
instances of the input that have never been sanitized 
in any way. 

Entroine checks tainted variable usage by analys-
ing its corresponding execution paths and conditions 
enforced on them (if any) for data propagation. The 
tool uses explicit taint object propagation rules for the 
most common Java methods, such as System. 
exec(). These rules are outlined in Section 4.3.2, 
where the technical implementation details are dis-
cussed. 

Example 4. Again, as an example, we will show how 
our method analyzes the program of Figure 1 to de-
cide in which Vulnerability rank to classify the IB of 
Example 2. Our tainted object analysis detects that (i) 
an input vector assigns data to variable data and, then, 
(ii) data is never checked by a conditional statement 
like an if-statement or any other instruction 
known to sanitize variable data. Then (iii) variable 
data is used in a sink (exec()) without further sani-
tization of its contents. Thus, our method will not de-
tect any transition that lowers the Vulnerability level 

of the execution path in Figure 1 and will therefore 
assign a high rating (4) on the Vulnerability scale for 
the IB containing this variable-execution path pair. 

Using Severity and Vulnerability thresholds, En-
troine can focus only on a subset of paths for exploit 
detection, thus limiting the number of paths needed to 
traverse during its tainted propagation analysis. The 
execution path set is pruned twice: (i) once based on 
Severity measurements and the type of instruction 
used (“safe” paths are discarded), and (ii) again when 
possible exploits have been detected by using a Vul-
nerability rank as threshold. 

3.2 Risk 

According to OWASP, the standard risk formulation 
is an operation over the likelihood and the impact of 
a finding (OWASP, 2015): 

Risk = Likelihood × Impact 

We adopt this notion of risk into our framework for 
exploit detection. In our approach, for each IB an es-
timate of the associated risk can be computed by com-
bining Severity(IB) and Vulnerability 
(IB) into a single value called Risk. We opt for an 
aggregation function that allows taking into account 
membership degrees in a Fuzzy Logic system (Cin-
golani and Alcala-Fdez, 2012): 

Definition 3. Given an AUT and an information 
block IB with specific input vectors, corresponding 
variables and their execution paths π ∈ P, function 
Risk(IB) is the aggregation 

Risk(IB)=aggreg(Severity(IB), 
  Vulnerability(IB)) 

with a fuzzy set valuation 

Risk(IB) = {Severity(IB)} ∩ {Vulner-
ability(IB)} 

Aggregation operations on fuzzy sets are operations 
by which several fuzzy sets are combined to produce 
a single fuzzy set. Entroine applies defuzzification 
(Leekwijck, and Kerre 1999) on the resulting set, us-
ing the Center of Gravity technique. Defuzzification 
is the computation of a single value from two given 
fuzzy sets and their corresponding membership de-
grees, i.e. the involvedness of each fuzzy set pre-
sented in Likert values.  

Risk ratings have the following interpretation: for 
two information blocks IB1 and IB2, if Risk(IB1) 
> Risk(IB2), then IB1 is more dangerous than IB2, 
in terms of how respective paths π1 and π2 affect the 
execution of the AUT and if the variable analysis de-
tects possible exploits. In the next section, we provide 
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technical details for the techniques used to implement 
the discussed analysis. 

The risk of each information block is plotted sep-
arately, producing a numerical and a fuzzy result. It is 
calculated by the Center of Gravity technique 
(Leekwijck and Kerre, 1999) via its Severity and Crit-
icality assigned values. Aggregating both member-
ship sets, produces a new membership set and, by tak-
ing the “center” (sort of an “average”), Entroine pro-
duces a discrete, numerical output. 

4 DESIGN AND 
IMPLEMENTATION 

In this section, the technical details on how Entroine 
was developed will be presented. The tools architec-
ture, workflow along with technical details on how 
Severity and Vulnerability are calculated. 

4.1 Entroine’s Architecture and 
Workflow 

Entroine consists of three main components: a static 
source code analyzer (depicted with the colours or-
ange and green in Figure 4), an Information Block 
constructor and, finally, the fuzzy logic system to 
compute the Risk (grey and yellow colours). 

Static Analysis: Static code analysis uses the Java 
compiler to create Abstract Syntax Trees for the 
AUT. It provides information concerning every single 
method invocation, branch statements and variable 
assignments or declarations found in the AUT. Com-
piler methods (visitIf(), visitMethodIn-
vocation(), etc.) were overridden, in order to an-
alyze branch conditions and sanitization checks of 
variables. The following sample output shows the 
AST meta-data gathered for variable sig_3 in a class 
named Sub-system114: 

DECLARE::12::double::sig_3::0:: 
     Main22::Subsystem114.java 

The ByteCode Engineering Library (Apache BCEL) 
(Dahm et al., 2003) is used to build the AUT’s control 
flow graph and to extract the program’s execution 
paths. BCEL is a library that analyzes, creates, and 
manipulates class files. 

Information Block Creator: This component com-
bines information obtained from the static analysis to 
create IBs that contain pairs of execution path – input 
vector. Information blocks are then assigned Severity 
and Vulnerability ranks. 

Fuzzy Logic System: The Fuzzy Logic system is im-
plemented using the jFuzzyLogic library (Cingolani 
and Alcala-Fdez, 2012). We use it to aggregate Se-
verity and Vulnerability sets to quantify the danger 
level for each IB. This aggregation classifies each IB 
to an overall Risk rank. 

 

Figure 4: Entroine's processing flowchart. 

4.2 Taxonomy of Dangerous 
Instructions 

Following Oracle’s JAVA API and documentation 
(Java API, 2013) (Gosling et al., 2013) and (Harold, 
2006), three categories of Java instructions were used 
to classify execution paths in IBs. (i) Control Flow 
instructions, (ii) Input Vector instructions and (iii) 
potentially exploitable methods (sinks). 159 Java 
methods were reviewed and gathered from formal 
publications and organizations that specifically clas-
sify exploits and, consequently, any instructions used 
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in them (Mell et al., 2006); (Gosling et al., 2013); 
(Harold, 2006).  

The taxonomy’s methods were grouped into 5 cat-
egories of Severity corresponding to the taxonomy’s 
Severity ranks. We based the Severity classification 
ranks for ranking instructions on the well-known in-
ternational Common Vulnerability Scoring System 
(CVSS) scoring system (Mell et al., 2006) and the 
Common Weakness Enumeration system (The Com-
mon Weakness Enumeration (CWE), 2015). CVSS 
classifies potential vulnerabilities into danger levels 
and is used by NIST’s National Vulnerability Data-
base (NVD) to manage an entire database of vulnera-
bilities found in deployed software. The NVD is also 
using the CWE system as a classification mechanism 
that differentiates CVEs by the type of vulnerability 
they represent. The Common Weakness Scoring Sys-
tem (CWSS) provides a mechanism for prioritizing 
software weaknesses. It applies scores into vulnera-
bilities based on a mathematical formula of character-
istics.  

Entroine uses all three of these systems, NVD-
CVSS, CWE and CWSS ranking to assign source 
code instructions to specific danger levels, according 
the type of vulnerability, in which they participate, its 
general SWSS score and corresponding ranking value 
in similar CVSS vulnerabilities that we found. 

Example: The Runtime.exec()instruction is 
widely-known to be used in many OS command in-
jection exploits. CWE and NIST provide a multitude 
of critical vulnerabilities based in this instruction (e.g. 
the CWE-78 category). Also the CWSS 3.0 scoring 
system ranked the use of exec() to execute code 
with application level privileges very high in its scale 
(9.3 out of 10). Thus, Entroine’s taxonomy classifies 
the exec() instruction into its very high (5) danger 
level category. Similar notion has been followed in 
organizing the rest of Entroine’s taxonomy instruc-
tions into Severity levels. This way, we limit our per-
sonal intuition, in an effort to support that Entroine’s 
ranking system is justified. 

Due to space limitations, only two small Java 
Class group examples are given. The complete clas-
sification system can be found in the provided link at 
the end of the article. The symbol § corresponds to 
chapters in Java documentation (Gosling et al., 2013): 

1. Control Flow Statements 
According to a report (National Security Agency 
(NSA), 2011), Boolean expressions determine the 
control flow. Such expressions are found in the fol-
lowing statements: 

(1) if-statements (§14.9) 
(2) switch-statements (§14.11) 

(3) while-statements (§14.12) 
(4) do-statements (§14.13) 
(5) for-statements (§14.14) 

2. Input Vector Methods 
Java has numerous methods and classes that accept 
data from users, streams or files (Harold, 2006). Most 
of them concern byte, character and stream input/out-
put. Entroine takes into account 69 different ways of 
entering data into an AUT. A small example is given 
below in Table 1. 

Table 1: Example group: Input Vector methods taxonomy. 

java.io.BufferedReader 
java.io. 
BufferedInputStream 

java.io.ByteArrayIn-
putStream 

java.io. 
DataInputStream 

java.lang.System javax.servlet.http. 

java.io.ObjectInputStream java.io.StringReader 

Based on (Harold, 2006) and common program-
ming experience, monitoring specific Java objects 
seems to be an adequate, albeit not entirely thorough, 
way of tracing user data inside Java applications. 

3. Exploitable Methods (sinks) 
Based on CWE, NVD (Mell et al., 2006) and common 
knowledge, we know that specific methods are used 
in exploits. We consider them as potential sinks and 
thus, Entroine examines them carefully. As men-
tioned earlier, Entroine’s taxonomy of exploitable 
methods was based on the exploit classification and 
relevant source code by NIST’s NVD in their CWE 
taxo-nomy (Mell et al., 2006). Entroine takes into ac-
count 90 methods known to be exploitable as sinks, 
according to NIST CWEs. It then classifies them ac-
cording to CWE’s rank and its corresponding CVSS-
CWE and CWSS rank. A small example is given at 
Table 2. 

Table 2: Example group - Sink methods taxonomy. 

java.lang.Runtime java.net.URLClassLoader 

java.lang.System java.sql.Statement 

javax.servlet. 

http.HttpServlet 
javax.script 

java.io. File java.net.Socket 

4.3 Classification and Ranking System 

As explained in Section 3, the Fuzzy Logic system 
from (Cingolani and Alcala-Fdez, 2012) is used in 
Entroine, which provides a means to rank possible 
logical errors. In order to aid the end-user, Severity 
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and Vulnerability values are grouped into 3 sets 
(Low, Medium, High), with an approximate width of 
each group of 5/3 = 1,66~1,5 (final ranges: Low in 
[0…2], Medium in (2…3,5] and High in (3,5…5]).  

4.3.1 Calculating Severity using Entropy 
Loss and Feature Selection 

Entroine’s classification system for execution path in-
structions and transitions uses Entropy Loss to cap-
ture the danger level in AUT’s execution paths. It 
takes into consideration specific instruction appear-
ances against the total number of instructions in a 
given set of transitions and applies Severity ranks to 
execution paths and the corresponding information 
blocks. 

Entroine detects, evaluates and classifies instruc-
tions found in execution. Severity ratings are applied 
by classifying each information block into one of five 
Severity levels, according to the Prior Entropy and 
Entropy Loss of features in every execution path. 

Since each information block refers to a specific 
execution path and its variables, the necessary metrics 
are calculated based on a ratio between path instruc-
tions considered dangerous (e.g. command execution 
instructions like exec()) and the total number of in-
structions involved in the transitions of each path. 
Similarly to (Ugurel et al., 2002), probabilities for the 
expected entropy loss of each feature are calculated 
as follows: 

Prሺܥሻ ൌ
numberOfPositiveInstructions	
Instructions݂ܱݎܾ݁݉ݑ݈ܰܽݐ݋ݐ

 

Prሺ	̅ܥ	ሻ ൌ 1 െ Pr	ሺܥሻ 

Prሺ݂ሻ ൌ
numberOfInstructionsWithFeatureF

Instructions݂ܱݎܾ݁݉ݑ݈ܰܽݐ݋ݐ
 

Pr൫	ഥ݂ 	൯ ൌ 1 െ Pr	ሺ݂ሻ 

Prሺܥ|݂ሻ ൌ

ൌ
numberOfInstructionsWithFeatureF

ܨ݁ݎݑݐܽ݁ܨ݄ݐInstructionsܹ݂ܱ݅ݎܾ݁݉ݑ݈ܰܽݐ݋ݐ
 

Prሺ̅ܥ	|݂ሻ ൌ 1 െ Pr	ሺܥ|݂ሻ 

Pr൫ܥ|݂̅	൯ ൌ

ൌ
numberOfInstructionsWithoutFeatureF

ܨ݁ݎݑݐܽ݁ܨݐݑ݋݄ݐInstructionsܹ݂ܱ݅ݎܾ݁݉ݑ݈ܰܽݐ݋ݐ
 

Pr൫̅ܥ	|	ഥ݂ 	൯ ൌ 1 െ Pr	ሺܥ|݂̅	ሻ 

numberOfPositiveInstructions denotes to the sum of 
instructions in a given path that belong to all danger 
levels regardless of category (low, medium or high), 
while numberOfInstructionsWithFeatureF represents 

the sum of instructions which belong to a specific 
danger level category (e.g. Severity rank 3), based on 
feature ranks.  

Entropy Loss is computed separately for each 
source code feature characterized by a specific token. 
Only tokens that are part of a variable’s execution 
paths are analyzed. For example, in the expression 
"data = properties.getProperty 
("data");" the tokens will be: "data”, 
"getProperty" and "properties".  

The taxonomy of Java instructions in section 4.2 
defines various features used in place of f in the above 
equations. An example of Entroine’s features classi-
fication is given in Table 3. For a complete list, the 
reader is referred to the link at the end of the article. 

Table 3: Severity classification examples. 

Rank Example of classified methods Category 

Low javax.servlet.http.Cookie 

java.lang.reflection.Field 

1 

Low 2 

Medium java.io.PipedInputStream 3 

High java.io.FileInputStream 4 

High java.sql.ResultSet:: getString 5 

4.3.2 Calculating Vulnerability using 
Control Flow Analysis and Tainted 
Object Propagation 

To calculate Vulnerability, Entroine runs a Tainted 
Propagation algorithm that classifies the likelihood of 
an exploit happening in an execution path. Entroine 
uses BCEL (BCEL, 2003); (Dahm et al., 2003) to 
traverse the program’s Control Flow Graph bottom-
to-top, in order to gather variable execution paths. En-
troine’s propagation rules are the following: 
 The highest entropy loss (information gain) is de-

tected Variables assigned data from expressions 
(e.g. +, -, method return) whose output depends on 
tainted data, are tainted. 

 Literals (e.g. hardcoded strings, true declarations) 
are never tainted. 

 If an object’s variable gets tainted, only data re-
ferred by that variable are considered tainted, not 
all object properties. 

 Methods that accept tainted variables as parame-
ters are considered tainted. 

 The return value of a tainted function is always 
tainted, even for functions with implicit return 
statements (e.g. constructors). 

Table 4 depicts the check rules for exploit detection. 
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Table 4: Vulnerability check rules and their categories. 

Rank Example of classified methods Category 

Low No improper checks of variables 1 

Low 
Sinks NOT linked to input 
vectors 

2 

Medium Propagation to methods 3 

High 
Improper checks on variables 
with input data – Variables used 
in sinks 

4 

High 
No checks - variables used in 
sinks 

5 

4.3.3 Risk 

Risk represents a calculated value assigned to each 
information block IB and its corresponding variables, 
by aggregating the above mentioned Severity and 
Vulnerability ratings. Membership of an IB in Risk 
sets is calculated using Fuzzy Logic’s IF-THEN rules 
(Fig. 2). For clarity, all scales (Severity, Vulnerability 
and Risk) are divided in the same sets: “Low”, “Me-
dium” and “High”. Fig. 2 provides an example of how 
Risk is calculated using Fuzzy Logic linguistic rules: 
 

IF Severity=low AND Vulnerability=low THEN Risk=low 
 

Table 5 shows the fuzzy logic output for Risk, based 
on the aggregation of Severity and Vulnerability. 

Table 5: Severity x Vulnerability = R - Risk sets. 

         Severity      

Vulnerability 
Low Medium High 

Low Low Low Medium 

Medium Low Medium High 

High Medium High High 

5 EXPERIMENTS AND RESULTS 

5.1 Entroine’s Architecture and 
Workflow 

In order to test our profiling approach implemented in 
Entroine, we needed appropriate AUTs to analyze. 
We considered whether we should use open-source 
software or “artificially made” programs, such as 
those usually used for benchmarking program analy-
sis tools. Both options are characterized by various 
positive characteristics and limitations. 

In choosing between real AUTs and artificial code 
for our purpose, we endorsed NSA’s principles from 
(National Security Agency (NSA), 2011) (National 
Security Agency (NSA), 2012) were it states that “the 

benefits of using artificial code outweigh the associ-
ated disadvantages”. Therefore, for preliminary ex-
perimentation with Entroine we have opted using the 
Juliet Test Case suite, a formal collection of artifi-
cially-made programs packed with exploits (Boland 
and Black, 2012).  

The Juliet Test Suite is a collection of over 81.000 
synthetic C/C++ and Java programs with a priori 
known flaws. The suite’s Java tests contain cases for 
112 different CWEs (exploits). Each test case focuses 
on one type of flaw, but other flaws may randomly 
manifest. A bad() method in each test-program 
manifests an exploit. A good() method implements 
a safe way of coding and has to be classified as a true 
negative. Since Juliet is a synthetic test suite, we mark 
results as true positive, if there is an appropriate warn-
ing in flawed (bad) code or false positive, if there is 
an appropriate warning in non-flawed (good) code, 
similarly to (Okun et al., 2013). 

This testing methodology is developed by NIST. 
We focus on exploits from user input, whereas other 
categories are not examined (e.g. race conditions). 
Table 6 below provides a list of all Weakness Class 
Types used in the study. The middle column depicts 
the categories of exploits on which Entroine is tested 
(e.g. HTTP Response/Req Header-Servlet (add): ex-
ploits that manifest on servlets when adding HTTP 
headers in responses and requests): 

Table 6: Weakness Classes – CWE. 

Weakness - 
CWE Types of weaknesses analyzed 

No. of 
tests 

CWE-113 

HTTP Response/Req HeaderServlet 
(add) 
HTTP Response/Req Cookie Servlet 
HTTP Response/Req HeaderServlet 
(set) 

15 

CWE-78 
Operating System Command_ 
Injection 

15 

CWE-89 

SQL Injection_connect_tcp 
SQL Injection_Environment_ 
execute 
SQL Injection_Servlet_execute 

15 

We ran Entroine on a set of vulnerable sample 
programs from the CWE categories depicted in Table 
6. Our test data set consists of 45 total Juliet pro-
grams, 15 cases from each CWE category depicted in 
Table 6. Each bad method with an exploit will have 
to produce a True Positive (TP), whereas all good 
methods will have to represent True Negatives (TN). 
Overall 178 tests (TP+TN) were included in all pro-
grams: 45 exploits and 133 cases of safe implementa-
tions (TNs). Entroine flags detections when both Se-
verity and Vulnerability ranks for an IB are ranked 
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above the Low zone (Risk >=3). Table 7 shows the 
overall results of our tests and, consequently, the ac-
curacy of the tool: 

Table 7: TP, TN, FP detection rate (80 samples). 

Weakness 
Class - CWE 

TP 
Rate 

TN 
Rate 

TP +TN
All 

tests 
No. of 

programs 

CWE  
samples 

45/ 45 133/ 133 178 178 45 

Accuracy TP = 100% , FP = 0% 

 

Table 8 provides a more detailed view of the re-
sults shown in Table 7. Table 8 depicts all tests per 
category of Juliet programs whereas Table 7 is an 
overall look on the results. 15 differentiated tests from 
each category where chosen for Entroine’s prelimi-
nary proof-of-concept: 

Table 8: Detection rates for each Weakness Type. 

Weakness Class 
- CWE 

TP TN 
TP + 
TN 

All 
tests 

No. of 
programs

CWE-89: SQL 
Injection 

15/15 51/51 66 66 15 

CWE-78: OS 
Command  
Injection 

15/15 28/28 43 43 15 

CWE-113: 
HTTP 
Response Split 

15/15 54/54 69 69 15 

6 CONCLUSIONS 

Entroine is in pre-alpha stage. Tests act as proof-of-
concept statistics, as testing real-world, big applica-
tions is not yet feasible due to package complexity, 
external libraries, etc.  

State explosion remains an issue, a problem inher-
ited by the used analysis techniques. Yet, state explo-
sion seems manageable using source code classifica-
tion to focus on specific variable paths. Severity rank-
ing helps this.  

Another limitation of Entroine is that it cannot de-
tect errors based on variables’ context. This needs se-
mantic constructs to analyze information behind input 
data. A formal comparison with known tools is, there-
fore, needed.  

We plan on using this technique to test real-world 
code used in cyber-physical systems (e.g. high level 
code that manipulates devices through SCADA sys-
tems). This will work as an adequate extension to pre-
vious work of ours (Stergiopoulos et al., 2015). 

Entroine runs relatively fast in comparison to what 
it has to do. Table 9 depicts execution times. 

Table 9: Entroine's execution times. 

Execution time (per 15 tests) 129 sec  

Entropy Loss calculation (per test) 1 msec 

Static analysis (per test) ~5 sec 

All tests were ran on an Intel Core i5 4570 PC (3.2 
GHz, 8GB RAM). A link to Entroine’s taxonomy and 
example files can be found at: http://www.in-
fosec.aueb.gr/Publications/Entroine_files.zip 
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