ishna, T., Sardashti, S., Sen, R., Sewell, K., Shoaib,
M., Vaish, N., Hill, M. D., and Wood, D. A. (2011).
The gem5 simulator. SIGARCH Comput. Archit.
News, 39(2):1–7.
Binkert, N. L., Dreslinski, R. G., Hsu, L. R., Lim, K. T.,
Saidi, A. G., and Reinhardt, S. K. (2006). The m5
simulator: Modeling networked systems. IEEE Micro,
26:52–60.
Carlson, T. E., Heirman, W., and Eeckhout, L. (2011).
Sniper: Exploring the level of abstraction for scalable
and accurate parallel multi-core simulations. In In-
ternational Conference for High Performance Com-
puting, Networking, Storage and Analysis (SC), pages
52:1–52:12.
Castro, M., Francesquini, E., Ngu
´
el
´
e, T. M., and M
´
ehaut, J.-
F. (2013). Analysis of computing and energy perfor-
mance of multicore, numa, and manycore platforms
for an irregular application. In Proceedings of the
3rd Workshop on Irregular Applications: Architec-
tures and Algorithms, IA3 ’13, pages 5:1–5:8, New
York, NY, USA. ACM.
Dawson, C. and Aizinger, V. (2005). A discontinuous
galerkin method for three-dimensional shallow wa-
ter equations. Journal of Scientific Computing, 22(1-
3):245–267.
Endo, F. A., Courouss
´
e, D., and Charles, H.-P. (2015).
Micro-architectural simulation of embedded core het-
erogeneity with gem5 and mcpat. In Proceedings of
the 2015 Workshop on Rapid Simulation and Perfor-
mance Evaluation: Methods and Tools, RAPIDO ’15,
pages 7:1–7:6, New York, NY, USA. ACM.
GEMS Development Team (2015). Official gems web-
site. http://research.cs.wisc.edu/gems/. Last visit on
02.02.2015.
G
¨
oddeke, D., Komatitsch, D., Geveler, M., Ribbrock, D.,
Rajovic, N., Puzovic, N., and Ramirez, A. (2013). En-
ergy efficiency vs. performance of the numerical so-
lution of pdes: An application study on a low-power
arm-based cluster. J. Comput. Phys., 237:132–150.
Heirman, W., Sarkar, S., Carlson, T. E., Hur, I., and
Eeckhout, L. (2012). Power-aware multi-core sim-
ulation for early design stage hardware/software co-
optimization. In International Conference on Parallel
Architectures and Compilation Techniques (PACT).
Imperas Software Limited (2014). OVP Guide to Using
Processor Models. Imperas Buildings, North Weston,
Thame, Oxfordshire, OX9 2HA, UK. Version 0.5,
docs@imperas.com.
ITMC TU Dortmund (2015). Official lido website.
https://www.itmc.uni-dortmund.de/dienste/ hochleis-
tungsrechnen/lido.html. Last visit on 26.03.2015.
KALRAY Corporation (2015). Official kalray
mppa processor website. http://www. kalray-
inc.com/kalray/products/#processors. Last visit on
31.03.2015.
Kurian, G., Neuman, S., Bezerra, G., Giovinazzo, A., De-
vadas, S., and Miller, J. (2014). Power modeling and
other new features in the graphite simulator. In Per-
formance Analysis of Systems and Software (ISPASS),
2014 IEEE International Symposium on, pages 132–
134.
Li, S., Ahn, J. H., Strong, R. D., Brockman, J. B., Tullsen,
D. M., and Jouppi, N. P. (2013). The mcpat framework
for multicore and manycore architectures: Simultane-
ously modeling power, area, and timing. ACM Trans.
Archit. Code Optim., 10(1):5:1–5:29.
Lis, M., Ren, P., Cho, M. H., Shim, K. S., Fletcher, C.,
Khan, O., and Devadas, S. (2011). Scalable, accu-
rate multicore simulation in the 1000-core era. In Per-
formance Analysis of Systems and Software (ISPASS),
2011 IEEE International Symposium on, pages 175–
185.
Miller, J., Kasture, H., Kurian, G., Gruenwald, C., Beck-
mann, N., Celio, C., Eastep, J., and Agarwal, A.
(2010). Graphite: A distributed parallel simulator for
multicores. In High Performance Computer Architec-
ture (HPCA), 2010 IEEE 16th International Sympo-
sium on, pages 1–12.
NVIDIA Corporation (2015a). Official nvidia seco develop-
ment kit website. https://developer.nvidia.com/seco-
development-kit. Last visit on 31.03.2015.
NVIDIA Corporation (2015b). Official nvidia tegra
2 website. http://www.nvidia.com/object/tegra-
superchip.html. Last visit on 27.03.2015.
NVIDIA Corporation (2015c). Official nvidia tegra
3 website. http://www.nvidia.com/object/tegra-3-
processor.html. Last visit on 27.03.2015.
Rajovic, N., Carpenter, P. M., Gelado, I., Puzovic, N.,
Ramirez, A., and Valero, M. (2013a). Supercomput-
ing with commodity cpus: Are mobile socs ready for
hpc? In Proceedings of the International Conference
on High Performance Computing, Networking, Stor-
age and Analysis, SC ’13, pages 40:1–40:12, New
York, NY, USA. ACM.
Rajovic, N., Rico, A., Puzovic, N., Adeniyi-Jones, C., and
Ramirez, A. (2014). Tibidabo: Making the case for an
arm-based {HPC} system. Future Generation Com-
puter Systems, 36(0):322 – 334. Special Section: In-
telligent Big Data Processing Special Section: Behav-
ior Data Security Issues in Network Information Prop-
agation Special Section: Energy-efficiency in Large
Distributed Computing Architectures Special Section:
eScience Infrastructure and Applications.
Rajovic, N., Rico, A., Vipond, J., Gelado, I., Puzovic, N.,
and Ramirez, A. (2013b). Experiences with mobile
processors for energy efficient hpc. In Proceedings of
the Conference on Design, Automation and Test in Eu-
rope, DATE ’13, pages 464–468, San Jose, CA, USA.
EDA Consortium.
Rosa, F., Ost, L., Raupp, T., Moraes, F., and Reis, R. (2014).
Fast energy evaluation of embedded applications for
many-core systems. In Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2014 24th
International Workshop on, pages 1–6.
SocLib Project (2015). Official soclib developer web-
site. http://www.soclib.fr/trac/dev. Last visit on
01.02.2015.
Weaver, V. M. and McKee, S. A. (2008). Are cycle accurate
simulations a waste of time? In Proc. 7th Workshop
on Duplicating, Deconstructing, and Debunking.
SIMULTECH2015-5thInternationalConferenceonSimulationandModelingMethodologies,Technologiesand
Applications
382