
An OWL-based XACML Policy Framework

Fabio Marfia1;2, Mario Arrigoni Neri3, Filippo Pellegrini1 and Marco Colombetti1;2
1DEIB - Department of Information, Electronics and Bioengineering, Politecnico di Milano, Via Ponzio 34/5, Milano, Italy

2Faculty of Communication Sciences, Università della Svizzera italiana, Via G. Buffi 13, Lugano, Switzerland
3Department of Computer Engineering and Mathematical Methods, University of Bergamo, viale Marconi 5, Dalmine, Italy

Keywords: Access Control, Policy Languages, Description Logics, Reasoning.

Abstract: We present an XACML policy framework implementation using OWL and reasoning technologies. Reasoning
allows to easily generate policy decisions in complex environments for expressive policies, while satisfying
the requirements of reliability and consistency for the framework. Furthermore, OWL ontologies represent
a valid substratum for tackling advanced complex tasks, as Policy Harmonization and Explanation, with a
complete rationale.

1 INTRODUCTION

Policies are a widespread approach for protecting
users privacy and security, and for allowing or en-
forcing users to abide by different norms and laws.
More and more complex and distributed scenarios are
requesting access control solutions, in the last years,
where a centralized framework is required to manage
a large set of functionalities related to policies. Those
functionalities include policy editing, storing, harmo-
nization, decision making, explanation.

Different standards are presented in literature,
modeling the general architectures and language pro-
tocols involved in such a type of framework. As pre-
sented by (Ardagna et al., 2011), while different so-
lutions where developed during the last decade, the
current de facto standard in access control policy lan-
guages is represented by XACML (XACML Stan-
dard, 2013).

XACML defines standard protocols for transmit-
ting credentials, requesting resources, defining and
storing access policies; together with the definition of
a general security layer, made up of different and spe-
cialised software components (XACML Data-Flow
model, 2013). Such a layer deals with the aforemen-
tioned tasks of allowing policy administrators to edit
and store policies, handling conflicts between contra-
dictory decrees, providing a ultimate response for ac-
cess requests, together with an explanation of such a
response eventually.

We present an implementation of an XACML-
compliant framework in this paper, based on OWL

and reasoning technologies. The expression and ap-
plication of deontic propositions is well known in lit-
erature, see, e.g., (Singh, 1998), (López et al., 2006),
(Fornara and Colombetti, 2010). However, as far
as we know, this is the first time they are applied
with the specific aim of providing a solution for an
XACML security layer, even if activities for formal-
izing XACML policies with Description Logics (DL)
were done in the past, for Policy Harmonization pur-
poses (Kolovski et al., 2007).

The present approach allows the expression of
complex and expressive policies as it is requested, we
believe, from nowadays pluralistic scenarios. Further-
more, a knowledge base represents an interesting rep-
resentation for policies, alternative to XACML, for
advanced automatic components wishing to portray
the regulation state for an end-user, or components
that are intended to modify their behaviour by reason-
ing on provided directives. All of that, while allowing
policy administrators to edit and store policies with-
out revising any hard-coded software.

Relying many core functionalities on DL reason-
ing activities requiring significant computational re-
sources, performances are worse than any known
XACML engine’s, as presented in Section 4. Conse-
quently, the present approach has to be considered in
cases where current XACML technologies are unable
to capture the expressiveness of the policies involved,
or as a substratum for providing advanced functional-
ities as, e.g., Policy Explanation. More details on the
subject are presented in Section 6.

Every policy example that is considered in this pa-

124 Marfia F., Arrigoni Neri M., Pellegrini F. and Colombetti M..
An OWL-based XACML Policy Framework.
DOI: 10.5220/0005570101240135
In Proceedings of the 12th International Conference on Security and Cryptography (SECRYPT-2015), pages 124-135
ISBN: 978-989-758-117-5
Copyright c 2015 SCITEPRESS (Science and Technology Publications, Lda.)

Figure 1: OWL-based XACML Framework – Component Diagram.

per is taken from hospital unit use cases, representing
a real-life scenario in which the wide policy expres-
sivity used in the present work definitely represents a
necessary requirement for data security and privacy.

The paper proceeds as follows: we present the
components and the structure of the framework in
Section 2. We explain how XACML policies are con-
verted into a collection of DL axioms, and how policy
decisions are generated in Section 3. Performances
are evaluated in Section 4. Related work is presented
in Section 5. Conclusion and future work are pre-
sented in Section 6.

2 AN OWL-BASED XACML
POLICY FRAMEWORK

As described in (XACML Data-Flow model, 2013),
the XACML standard defines a general framework
for receiving data requests and handling responses ac-

cording to an arbitrarily large collection of policies,
that are stored in a repository according to a stan-
dard XML-compliant model. The subsequent archi-
tectural components are defined for the framework,
as described in (XACML RFC2904, 2000):

� Policy Enforcement Point (PEP): Point which
intercepts user’s access request to a resource,
makes a decision request to the PDP to obtain the
access decision (i.e. access to the resource is ap-
proved or rejected), and acts on the received deci-
sion;

� Policy Decision Point (PDP): Point which evalu-
ates access requests against authorization policies
before issuing access decisions;

� Policy Administration Point (PAP): Point which
manages access authorization policies;

� Policy Information Point (PIP): The system en-
tity that acts as a source of attribute values;

� Context Handler: the Context Handler deals

An�OWL-based�XACML�Policy�Framework

125

with the coordination of the communications be-
tween PDP, PEP and PIP; in particular, it acts in
order to return the output of the PDP to the PEP as
a response for an access request, consisting even-
tually in a retrieved resource.

Figure 1 presents how the described components
interact with one another, while showing in a synop-
tic view each component’s outline in the OWL-based
implementation.

The technology behind the PEP, that is developed
in order to enforce or regulate access to resources,
is strongly domain-dependent and it is not matter of
the current work. The PDP is provided with a Policy
Evaluator component that interfaces with a DL Rea-
soner. Policy decisions and explanations are gener-
ated by the PDP as a result of a reasoning activity on
three different ontologies:

1. A Policy Terminological Box (TBOX), that is the
expression of the active policies and it is obtained
as a result of an algorithmic translation from an
XACML collection of policies. Tasks such as pro-
viding an interface for policy editing to policy ad-
ministrators, synchronizing the TBOX ontology
with XACML policies, harmonizing conflict be-
tween policies, are delegated to the PAP.

2. A Domain TBOX, representing a meaningful
portrayal of the application domain. It is arbitrar-
ily expressive and it is thought to cover the whole
collection of concepts and relations involved in
the application domain.

3. A Domain Assertional BOX (ABOX), gathering
the different descriptions of the individuals and re-
sources involved in the application domain. They
are represented as an instantiations of the concepts
and relations depicted in the Domain TBOX.

Both Domain TBOX and ABOX are stored and man-
aged by the PIP.

3 AXIOMATIC POLICIES

As presented in Section 2, the PAP allows a policy ad-
ministrator to edit and store policies in the form of an
XACML collection. XACML represents the XML-
compliant description of the policies in the environ-
ment, while the DL form of the same collection is
represented by an OWL TBOX. Policies are translated
from the former representation to the latter automati-
cally.

(Kolovski et al., 2007) present how to formalize
XACML policies, using a more complex syntax than
DL, defined DDL�. That is done according to three

types of XACML combining algorithms (see also
(XACML Combining Algorithms, 2013)): permit-
overrides, deny-overrides, first-applicable. We de-
cided to reduce the expressivity of the XACML col-
lection specifiable by the PAP, in respect to the afore-
mentioned formalisation, as follows: the policy col-
lection is reduced to a set of XACML rules, applying
according to the policy combining algorithm deny-
overrides only. The algorithm takes into considera-
tion every rule, and, then, if both access deny and per-
mit apply, an access deny is returned as a response.
Whether nothing is found to be applied in the whole
set of rules, a final general policy is defined in order
to deny any access. Such approach allows to rely on
standard DL technologies for reasoning without in-
volving the DDL� formalisation, obtaining better per-
formances and an easier policy representation. We be-
lieve that such simplification is a sufficient approach
for satisfying the requirements of many real-life envi-
ronments in which, for security reasons, every access
is denied ex-ante, while policies are applied for mod-
ifying such default behaviour.

In order for the rules to be properly translated
into an OWL TBOX, they can not be expressed ar-
bitrarily: we have then identified five different pol-
icy archetypes, according to which the policies must
be defined. The identified archetypes cover a wide
range of expressiveness, in particular IBAC, RBAC
and ABAC are fully covered by the model.

The five different policy archetypes are shown in
Table 1. Each policy can be composed with others
using AND or OR conjunctions in our model, as fore-
seen by XACML protocol, in order to generate com-
plex rules. Furthermore, each policy can be positive
or negative, allowing the policy administrator to per-
mit or deny access to specific resources.

We describe the five policy archetypes, together
with policy examples, in Section 3.1, while specifying
how every type of policy is translated into a set of
axioms. We describe how policies can be combined
with AND or OR conjunctions in Section 3.2. We
present the general algorithm for translating XACML
policies in Section 3.3. We present how the PDP can
obtain policy decisions from the generated axioms in
Section 3.4.

The syntax in which all DL axioms are presented
in this Section is the Manchester OWL Syntax (Hor-
ridge and Patel-schneider, 2008).

It is important to underline that complex DL struc-
tures (i.e. property chains, class definitions) can be
present in the Domain TBOX, allowing the definition
of policies based on composite relations in a concise
manner. So, the reader must not be mislead in con-
sidering the whole expressive ability of the system

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

126

Table 1: Policy Archetypes.

ID
Access
Control
Reference

Description Example

1 IBAC A single subject is allowed to access to one
or more resources

John Andrews can read Healthcare
Assistant Documents

2 RBAC A group of subjects is allowed to access to
one or more resources

Medical Consultants can write a
Medical Regulation Document

3 ABAC Only subjects with specific attributes are
allowed to access to one or more resources

Females can not read Andrology
Documents

4 ABAC
Only subjects in a specific relation with an-
other subject with specific attributes are al-
lowed to access to one or more resources

A tutor of a person that is not of age
can read document 305871

5 N/A
Only subjects in a specific relation with an-
other subject are allowed to access to the
resources that refer to the latter subject

A subject can read all the records of
the ward he/she works in

by the simple archetypes shown. In principle, every
single proposition in a policy could be obtained af-
ter a complex inference procedure, starting from the
axioms expressed in the Domain TBOX and ABOX.

For example, we may want to define the tutor of an
impatient I as herself, if she is of age; otherwise, her
father and mother are her tutor. In order to express
a policy allowing the tutor of an impatient to access
to certain documents, we can simply define the sub-
ject of the policy as tutorOf I. That can be done as
DL axioms are present in the Domain TBOX defin-
ing what a tutor is, according to the aforementioned
definition.

3.1 Policy Archetypes

3.1.1 Type 1 - IBAC Simple Policy

The first policy archetype is the permission released
or denied to a single subject, for the access to a re-
source or a group of resources. A sample XACML
Type 1 rule is shown in Table 1, allowing the sub-
ject John Andrews to read the group of resources
HealthcareAssistantDocument. The policy is
translated into a TBOX ontological policy with the
subsequent procedure. First, an OWL class is gener-
ated, containing only the individual john andrews:

Class:
John andrews Class

equivalentTo:
fjohn andrewsg

Then, the functional Identity Property
identityOn John andrews Class is defined for the

generated class, representing the property of each
member of the class pointing to the member itself:

Class:
John andrews Class

equivalentTo:
identityOn John andrews Class some Self

The same is done for the group of resources, rep-
resented in the Domain TBOX ontology by the class
HealthcareAssistantDocument:

Class:
HealthcareAssistantDocument

equivalentTo:
identityOn HealthcareAssistantDocument

some Self

Finally, the positive permission to be annotated,
canRead, is defined as a superproperty of a specific
property chain, as follows:

objectProperty:
identityOn John andrews Class o
topObjectProperty o
identityOn HealthcareAssistantDocument

SubPropertyOf:
canRead

where topObjectProperty is the Universal
Property, connecting each entity to each other
in the ontology. The individual john andrews
is connected in this way with the property
canRead to each resource belonging to the class

An�OWL-based�XACML�Policy�Framework

127

HealthcareAssistantDocument.

3.1.2 Type 2 - RBAC Policy

The second policy archetype is a permission released
or denied to a group of subjects, for the access to a
resource or a group of resources. A sample XACML
Type 2 rule is shown in Listing 1, allowing every iden-
tity that is a MedicalAssistant to write a document
that is a MedicalRegulationDocument. The pol-
icy is translated into a TBOX ontological policy with
the subsequent procedure. First, the functional Iden-
tity Property identityOn MedicalAssistant is de-
fined, representing the property of each member of
the class MedicalAssistant pointing to the member
itself:

Class:
MedicalAssistant

equivalentTo:
identityOn MedicalAssistant some Self

The same is done for the group of resources, rep-
resented in the Domain TBOX ontology by the class
MedicalRegulationDocument:

Class:
MedicalRegulationDocument

equivalentTo:
identityOn MedicalRegulationDocument
some Self

Finally, the positive permission to be annotated,
canWrite, is defined as a superproperty of a specific
property chain, as follows:

objectProperty:
identityOn MedicalAssistant o
topObjectProperty o
identityOn MedicalRegulationDocument

SubPropertyOf:
canWrite

All the individuals belonging to the class
MedicalAssistant are connected in this way with
the property canWrite to each resource belonging to
the class MedicalRegulationDocument.

3.1.3 Type 3 - ABAC Simple Policy

The third policy archetype represents the permission
released or denied to a single subject characterized by

one or more attributes, for the access to a resource
or a group of resources. A sample XACML Type 3
rule is shown in Listing 2, allowing every subject with
dataProperty hasGender equal to "F" to read the
group of resources AndrologyDocument. The policy
is translated into a TBOX ontological policy with the
subsequent procedure. First, an OWL class is gener-
ated, containing only the individuals characterized by
the aforementioned property:

Class:
hasGender F Class

equivalentTo:
hasGender value "F"

Then, the functional Identity Property
identityOn hasGender F Class is defined for the
generated class, representing the property of each
member of the class pointing to the member itself:

Class:
hasGender F Class

equivalentTo:
identityOn hasGender F Class some Self

The same is done for the group of resources, rep-
resented in the Domain TBOX ontology by the class
AndrologyDocument:

Class:
AndrologyDocument

equivalentTo:
identityOn AndrologyDocument some Self

Finally, the negative permission to be annotated,
CanNotRead, is defined as a superproperty of a spe-
cific property chain, as follows:

objectProperty:
identityOn hasGender F Class o
topObjectProperty o
identityOn AndrologyDocument

SubPropertyOf:
CanNotRead

All the individuals with the dataProperty
hasGender value "F" are connected in this way
with the property CanNotRead to each resource
belonging to the class AndrologyDocument.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

128

3.1.4 Type 4 - ABAC Composite Policy

The fourth policy archetype differs from the simple
ABAC policy as the permission is released or denied
to a subject that is in relation with another subject
characterized by one or more attributes, for the access
to a resource or a group of resources. So, attributes are
checked for the latter subject, while the permission is
released or denied to the former. A sample XACML
Type 4 rule is shown in Table 1, allowing every sub-
ject that isTutorOf another subject with dataProp-
erty hasAge lower than 18 to read the single docu-
ment document 305871. The policy is translated into
a TBOX ontological policy with the subsequent pro-
cedure. First, an OWL class is generated, containing
only the individuals characterized by the aforemen-
tioned relation:

Class:
isTutuorOf subjectThat hasAge
lowerThan18 Class

equivalentTo:
isTutorOf some (hasAge some int[< 18])

Then, the functional Identity Property
identityOn isTutuorOf subjectThat hasAge
lowerThan18 Class is defined for the generated
class, representing the property of each member of
the class pointing to the member itself:

Class:
isTutuorOf subjectThat hasAge
lowerThan18 Class

equivalentTo:
isTutuorOf subjectThat hasAge
lowerThan18 Class some Self

Being the resource a single resource, an OWL
class has to be generated for it:

Class:
document 305871 Class

equivalentTo:
fdocument 305871g

Then, the functional Identity Property
identityOn document 305871 Class is gener-
ated as well for the class:

Class:
document 305871 Class

equivalentTo:
identityOn document 305871 Class
some Self

Finally, the positive permission to be annotated,
CanRead, is defined as a superproperty of a specific
property chain, as follows:

objectProperty:
isTutuorOf subjectThat hasAge -
lowerThan18 Class o
topObjectProperty o
identityOn document 305871 Class

SubPropertyOf:
CanRead

All the individuals with the objectProperty
isTutuorOf pointing to an individual with the dat-
aProperty hasAge some int[< 18] are connected
in this way with the property CanRead to the docu-
ment document 305871.

3.1.5 Type 5 - Triangular Relation Policy

The fifth policy archetype puts in relation the subject
and the resource generating the permission only in the
case that a common individual is in a specific connec-
tion with both of them. The added permission prop-
erty represents the side of a triangle in such a case,
where its vertexes are represented by the subject, the
resource and the individual in common. A sample
Type 5 rule is shown in Table 1 and in Figure 2, al-
lowing every subject to read every MedicalRecord
of the ward in which he worksIn.

The OWL axiomatic expression of such a policy
is characterized by a single property chain expressed
as a subproperty of the involved permission property:

objectProperty:
worksIn o
ownsRecord

SubPropertyOf:
canRead

3.2 Combining Policies

As stated, the presented policies can be also expressed
together in a single XACML rule using AND or OR
operators. As it can be understood, each archetype
differs from the others for the way in which the sub-
ject requirements are expressed only, while the ex-

An�OWL-based�XACML�Policy�Framework

129

Figure 2: Type 5 policy example – the annotated permission
is the side of a triangle in the ontological representation.

pression of permission and resources (a single one,
or a group) are the same. So, a joined expression of
two policies can be, for example, allowing a Medic
that is male to read every AndrologyDocument. That
is an expression of a Type 2 + Type 3 policy.

In case that many policies are joined with an OR
conjunction, it is sufficient to translate each policy
singularly into a TBOX policy.

In case that many policies are joined with an AND
conjunction, the approach changes whether none, one
or more Type 5 policy are present.

In case that no Type 5 policy is present, a new
class is defined as an intersection of all the classes
that identify the subject requirements for every policy.
Then, a new Identity Property is created for the class
and the positive or negative permission is assigned as
a superproperty of the property chain between the cre-
ated Identity Property, the topOjbectProperty and
the Identity Property on the resources, as it is done for
any of the Type 1 to 4 archetypes.

In case that one Type 5 policy is present, a new
class is defined as an intersection of all the classes that
identify the subject requirements for every policy of
Type 1 to 4. Then, a new Identity Property is created
for the class and the positive or negative permission
is assigned as a superproperty of the property chain
between the just created Identity Property and the two
object properties involved in the Type 5 policy.

Expression of an axiomatic policy is not possible,
using DL, in case of AND conjunction between more
than one Type 5 policies. That because specifica-
tion of double paths between the same identities is in-
volved, and it is not possible, as explained in (Hitzler
et al., 2009). However, it is possible to address the
issue defining a SWRL Rule (SWRL Rules, 2004).

As an example, we may want to allow a medic
to read any medical record of the ward he worksIn,
but only if it is about a patient he follows. That is an
AND conjunction between two Type 5 policies. The
subsequent SWRL rules could then be defined:

worsIn(x, z), ownsRecord(z, y),
isMedicOf(x, a), isAbout(y,a)
-> canRead(x, a)

3.3 Axiomatic Policies Generation
Algorithm

We present the general algorithm for translating the
XACML collection of policies into an OWL TBOX,
as Algorithm 3.1.

Algorithm 3.1: XACML POLICIES TO DL POLICIES()

O = loaded ontology (Policy T BOX)

R = set o f rules
for each hrule : ri 2 R

do

8>>><>>>:

T S = /0 (set o f sub ject identities f or rule r)
S = set o f sub jects o f rule r
for each hsub ject : si 2 S

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

T M = /0 (set o f sub jectMatch identities
f or sub ject s)

M = set o f sub jectMatches o f sub ject s
for each hsub jectMatch : mi 2M

do

(
create ob jectProperty i as identity on m
T M T M [fig

create ob jectProperty c as identity on the
con junction o f all elements in T M

T S T S [fcg
T D = /0 (set o f resource identities f or rule r)
D = set o f resources o f rule r
for each hresource : di 2D

do

8>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>:

T M = /0 (set o f resourceMatch identities
f or resource d)

M = set o f resourceMatches o f resource d
for each hresourceMatch : mi 2M

do

(
create ob jectProperty i as identity on m
T M T M [fig

create ob jectProperty c as identity on the
con junction o f all elements in T M

T D T D [fcg
a : ob jectProperty f or the action speci f ied in rule r
U : the Universal Property (topOb jectProperty)
for each hob jectProperty : tsi 2 T S

do

8><>:
for each hob jectProperty : tdi 2 T D

do

(
axiom ax = fts�U � td v ag
O O [faxg

The procedure analyzes rule by rule and, for each
rule, the approach for managing it can be divided into
three main parts.

First, each subject s in the rule is analyzed: each
subjectMatch m in s is taken into consideration for
defining an OWL class, that corresponds to s. The
definition of such class is obtained as the conjunction
of all the subjectMatches in s.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

130

Then, the same is done for each resource r: each
resourceMatch in r is taken into consideration for
defining a class, that corresponds to r. The definition
of such class is obtained as the conjunction of all the
resourceMatches in r.

The final part considers each (subject,
resource) couple, and it generates a policy axiom
ax defining the property chain between the identity
on the subject class, the universal property U and
the identity on the resource class as a subclass of
the action permission a, as specified in the rule (it
may be, e.g., canRead).

3.4 Policy Decision

Once the XACML policies are correctly translated
into a Policy TBOX by the PAP, when the PDP
receives an XACML access request from the Con-
text Handler (more formally, an XACML Context
(XACML Data-Flow model, 2013)), it retrieves the
Policy TBOX from the PAP and the Domain TBOX
and ABOX from the PIP.

The Domain ABOX may include even thousands
individuals in real environments, so, only individuals
that can be useful for inferring the access permission
are kept in the ABOX by the PIP before returning it.
Then, the task of Policy Decision reduces itself to the
process of querying the set of the retrieved ontolo-
gies, for verifying whether they logically entail or not
two specific theorems: the one stating that the subject
can do the requested action on the requested resource
(positive permission theorem), and the one stating that
the subject can not do the requested action on the re-
quested resource (negative permission theorem).

Whether only the positive permission theorem is
found, a positive authorization is returned by the PDP
to the Context Handler. A negative authorization is
returned in any other case. As an example, we can as-
sume that the permission request for john andrews
to read the document document 305871 is received
by the PDP from the Context Handler. Two DL
queries (DL query, 2008) are sent, then, to the set
of ontologies for retrieving the two subsequent the-
orems:

1. john andrews canRead document 305871.

2. john andrews canNotRead
document 305871.

If theorem 1 is found only, the response of the
PDP is a positive authorization. Otherwise, the re-
sponse is a negative authorization.

4 PERFORMANCES

We developed a prototype framework using JAVA and
OWL API (Horridge and Bechhofer, 2011), with Her-
mit 1.3.8 (Shearer et al., 2008) as reasoning engine.
The tests were done using a PC with an Intel Core 2
Duo 2.8 GHz processor, and 8 GB 800 MHz DDR2
as RAM.

As it can be seen in Figures 3a and 3b, axiomatic
policies generation time is of the order of fractions of
a second (e.g., 0.15 s with 1000 individuals and 75
policies), and it changes almost linearly in respect to
the number of ABOX individuals, and exponentially
in respect to the number of rules.

The number of ABOX individuals, as it can be
seen in Figure 3c, does not affect the Policy Deci-
sion time significantly. In fact, the time for identify-
ing useful individuals in the ABOX represents a small
fraction of the total time, while the rest is used for the
reasoning algorithms execution.

Figure 3d shows the Policy Decision time in func-
tion of the number of rules, with a 2000 individuals
ABOX; e.g., the Policy Decision time with 75 rules
is 3.65 s. As it can be noticed, response time starts
to grow exponentially after 50 rules. It is reasonable
to consider that an amount of policies of the order of
dozens fits well for many real environments, so, such
exponential growth does not seem to represent a ma-
jor issue at the current state.

In fact, we believe that 75-100 is a realistic amount
of policies for different real-life scenarios, e.g., a hos-
pital unit. As it can be seen from Figure 3d, a Policy
Decision took about 4-5 seconds in such a case in our
tests. That can not be considered a good performance
for real-time environments. Anyway, it is reasonable
to state that an optimized and compiled code, running
on an advanced hardware can lower the Policy Deci-
sion time up to a performance that can be considered
acceptable, as, e.g., 1 s or lower.

The Policy Decision performances of three differ-
ent XACML policy engines are presented in (Mourad
and Jebbaoui, 2015). They are SBA-XACML engine
(Mourad and Jebbaoui, 2015), XEngine (XEngine,
2008) and Sun PDP (SUN XACML, 2004). Even
with 400 rules, the Policy Decision time of every en-
gine results under 0.1 s, while we present a Policy
Decision time of 3.65 seconds for 75 rules with 2000
individuals. Our performances can be estimated in the
order of 100x in time in respect to such standard pol-
icy engines. The estimation varies in respect to the
specific engine and the number of rules.

An�OWL-based�XACML�Policy�Framework

131

Figure 3: (a) TBOX policies generation time as a function of the number of individuals, with 50 and 75 rules – (b) TBOX
policies generation time as a function of the the number of rules, with 1000 individuals – (c) Policy Decision time as a function
of the the number of individuals, with 50 and 75 rules – (d) Policy Decision time as a function of the the number of rules, with
2000 individuals.

5 RELATED WORK

(Kolovski et al., 2007) present a formalization of
XACML using DDL�, that is a still-decidable ex-
tension of DL. Their work is aimed at modeling
a generic set of XACML policies using First Or-
der Logic (FOL), in order to easily apply tasks of
Policy Harmonization. While their approach cov-
ers a wider range of XACML combining algorithms
(permit-overrides, deny-overrides, first-applicable),
they do not seem to take advantage of FOL expres-
sivity to manage complex policies as our triangular
relation Type 5 policies (see Section 3.1.5). Further-
more, their work is not aimed at defining a complete
implementation of an XACML framework. In partic-
ular, no Policy Decision method is described.

(Finin et al., 2008) presents two different methods
for representing RBAC policies with XACML and
OWL. The first method consists in representing roles
as OWL classes, the second in assigning attributes to

specific individuals, in order to identify their roles.
We fully adopted the first representation method in
our model, describing roles as OWL classes in our
Domain TBOX. The second representation method
was adopted by (Ferrini and Bertino, 2009) instead,
for modeling RBAC access control within XACML.
We differ from that approach in the fact that we sup-
port ABAC also and we rely on a Domain TBOX for
enlarging policy expressivity. Furthermore, they use
reasoning for inferring roles and separation of duties
only, without implementing a full PDP with OWL and
reasoning.

(Ardagna et al., 2009) extend the XACML archi-
tecture with more functionalities for credential-based
management and privacy control, in the context of the
PrimeLife European project (Primelife, 2008). They
developed a Policy Decision engine in a complete
framework for secure access control, with no use of
semantics. While their approach results in better per-
formances, complex tasks as Policy Harmonization

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

132

and Policy Explanation seem to be not directly man-
ageable in the environment.

(Paraboschi and Arrigoni Neri, 2013) present a
framework for policy specification using OWL, in the
context of the PoSecCo European project (Posecco,
2010). PoSecCo project is aimed at proposing new
methods and tools for configuring a service landscape
in a way to meet security requirements for a generic
environment. Policies can be specified at three differ-
ent levels of abstraction in the framework. Paraboschi
and Neri proposes a solution for policy specification
in the context of the middle level, that is defined IT
Policy level. Policy Harmonization techniques using
DL are proposed. No method for Policy Decision is
described.

(Mourad and Jebbaoui, 2015) propose an XACML
framework implementation, SBA-XACML, for pro-
viding an efficient Policy Decision process for web
services. Their objective is to provide a real-time de-
cision process for Policy Decision, with better perfor-
mances than the industrial standard, represented by
SUN Policy Decision Point (SUN XACML, 2004).
They use set-based algebra for translating and pro-
cessing XACML policies. Again, while their ap-
proach results in efficient performances, complex se-
mantic tasks seems to be not directly manageable.

Between non-XACML-related security frame-
works that make use of OWL and reasoning, there
are KAoS (Uszok and Bradshaw, 2008) and OWL-
POLAR (Sensoy et al., 2012).

KAoS is a collection of software services for the
generation of policies that are human expressible and
machine enforceable. It presents a user-friendly in-
terface for editing policies, Policy Decision services,
specific software for Policy Enforcement. While their
approach seems to represent an effective background
for complex semantic tasks, their framework is not di-
rectly compatible with the XACML standard.

OWL-POLAR is a framework for the expression
of permissions and obligations using OWL. Their Pol-
icy Decision approach consists in a set of SPARQL-
DL queries (Sirin and Parsia, 2007) for a collection
of axioms. Policy Harmonization algorithms are pro-
vided. Again, while their semantic approach can be a
valid background for complex tasks, their framework
is not directly compatible with the XACML standard.

6 CONCLUSION AND FUTURE
WORK

We presented an implementation of an XACML
framework in this paper, based on OWL and reason-
ing technologies. While policy conversion to DL is

executed within a reasonable time, Policy Decision
performances are worse than any known XACML en-
gine. Anyway, we believe that our solution can be a
reasonable alternative in a real-life scenario to ordi-
nary XACML engines for the subsequent reasons:

� An optimized code and an efficient hardware can
support a usable PDP engine for real-time interac-
tions in real-life environments;

� DL expressiveness can be used to define policies
which complexity can not be caught by ordinary
XACML engines;

� External applications can generate interesting por-
trays of the regulation state by accessing to the
framework semantics for an end-user;

� Automatic agents may regulate their behaviour by
reading and reasoning on provided policies;

� Advanced complex tasks can be exploited that are
almost impossible for ordinary XACML frame-
works; as Policy Explanation, or Policy Harmo-
nization.

Improvements can be done in the future in the Pol-
icy TBOX expressiveness, in order to support more
XACML policy combining algorithms (e.g., permit-
overrides, first-applicable), as it is done by (Kolovski
et al., 2007). Also, considering temporal constraints
for the policies can represent a further advance (see,
e.g., (Batsakis et al., 2011)).

Moreover, as stated, a Policy Explanation can be
provided together with the response, using OWL Ex-
planation technology (Horridge et al., 2008), as al-
ready done by (Marfia, 2014). Also, a Policy Harmo-
nization service based on the OWL policy representa-
tion can be developed for the framework, accordingly
to what presented in (Paraboschi and Arrigoni Neri,
2013) and (Kolovski et al., 2007).

REFERENCES

Ardagna, C., De Capitani Di Vimercati, S., Neven, G., Para-
boschi, S., Pedrini, E., Preiss, F.-S., Samarati, P., and
Verdicchio, M. (2011). Advances in Access Control
Policies. In Camenisch, J., Fischer-Hubner, S., and
Rannenberg, K., editors, Privacy and Identity Man-
agement for Life, pages 327–341. Springer Berlin Hei-
delberg.

Ardagna, C., De Capitani di Vimercati, S., Paraboschi, S.,
Pedrini, E., and Samarati, P. (2009). An XACML-
Based Privacy-Centered Access Control System. In
Proc. of the 1st ACM Workshop on Information Se-
curity Governance (WISG 2009), Chicago, Illinois,
USA.

An�OWL-based�XACML�Policy�Framework

133

Batsakis, S., Stravoskoufos, K., and Petrakis, E. G. M.
(2011). Temporal Reasoning for Supporting Tempo-
ral Queries in OWL 2.0. In Konig, A., Dengel, A.,
Hinkelmann, K., Kise, K., Howlett, R. J., and Jain,
L. C., editors, KES (1), volume 6881 of Lecture Notes
in Computer Science, pages 558–567. Springer.

DL query (2008). DL Query guide - Protégé DLQuery-
Tab. http://protegewiki.stanford.edu/wiki/
DLQueryTab.

Ferrini, R. and Bertino, E. (2009). Supporting RBAC with
XACML+OWL. In Proceedings of the 14th ACM
Symposium on Access Control Models and Technolo-
gies, SACMAT ’09, pages 145–154, New York, NY,
USA. ACM.

Finin, T., Joshi, A., Kagal, L., Niu, J., Sandhu, R., Winsbor-
ough, W. H., and Thuraisingham, B. (2008). ROWL-
BAC - Representing Role Based Access Control in
OWL. In Proceedings of the 13th Symposium on
Access control Models and Technologies, Estes Park,
Colorado, USA. ACM Press.

Fornara, N. and Colombetti, M. (2010). Ontology and Time
Evolution of Obligations and Prohibitions Using Se-
mantic Web Technology. In Baldoni, M., Bentahar,
J., van Riemsdijk, M., and Lloyd, J., editors, Declara-
tive Agent Languages and Technologies VII, volume
5948 of Lecture Notes in Computer Science, pages
101–118. Springer Berlin Heidelberg.

Hitzler, P., Krötzsch, M., and Rudolph, S. (2009). Foun-
dations of Semantic Web Technologies. Chapman &
Hall/CRC. Pages 226–229.

Horridge, M. and Bechhofer, S. (2011). The OWL API: A
Java API for OWL Ontologies. Semant. web, 2(1):11–
21.

Horridge, M., Parsia, B., and Sattler, U. (2008). Laconic
and Precise Justifications in OWL. In Proceedings
of the 7th International Conference on The Semantic
Web, ISWC ’08, pages 323–338, Berlin, Heidelberg.
Springer-Verlag.

Horridge, M. and Patel-schneider, P. F. (2008). P.F.: Manch-
ester syntax for OWL 1.1. In In: OWLED 2008, 4th
international workshop OWL: Experiences and Direc-
tions (2008) Live Extraction 1223.

Kolovski, V., Hendler, J., and Parsia, B. (2007). Analyzing
Web Access Control Policies. In Proceedings of the
16th International Conference on World Wide Web,
WWW ’07, pages 677–686, New York, NY, USA.
ACM.

López, F. L. Y., Luck, M., and D’Inverno, M. (2006).
A Normative Framework for Agent-based Systems.
Comput. Math. Organ. Theory, 12(2-3):227–250.

Marfia, F. (2014). Using Abductive and Inductive Infer-
ence to Generate Policy Explanations. In Obaidat, M.,
Holzinger, A., and Samarati, P., editors, Proceedings
of International Conference on Security and Cryptog-
raphy (SECRYPT 2014). SciTePress.

Mourad, A. and Jebbaoui, H. (2015). SBA-XACML:
Set-based approach providing efficient policy deci-
sion process for accessing Web services. Expert Syst.
Appl., 42(1):165–178.

Paraboschi and Arrigoni Neri (2013). D2.4 - Policy Har-
monization and Reasoning. PoSecCo WP2, Business
and IT level policies.

Posecco (2010). PoSecCo - Policy and Security Configura-
tion Management. http://www.posecco.eu/.

Primelife (2008). PrimeLife - Bringing sustainable privacy
and identity management to future networks and ser-
vices. http://primelife.ercim.eu/.

Sensoy, M., Norman, T. J., Vasconcelos, W. W., and Sycara,
K. (2012). OWL-POLAR: A Framework for Semantic
Policy Representation and Reasoning. Web Semant.,
12-13:148–160.

Shearer, R., Motik, B., and Horrocks, I. (2008). HermiT: A
Highly-Efficient OWL Reasoner. In Dolbear, C., Rut-
tenberg, A., and Sattler, U., editors, OWLED, volume
432 of CEUR Workshop Proceedings. CEUR-WS.org.

Singh, M. P. (1998). An Ontology for Commitments in Mul-
tiagent Systems: Toward a Unification of Normative
Concepts. Artificial Intelligence and Law, 7:97–113.

Sirin, E. and Parsia, B. (2007). SPARQL-DL: SPARQL
Query for OWL-DL. In In 3rd OWL Experiences and
Directions Workshop (OWLED-2007.

SUN XACML (2004). Sun’s XACML implementation.
http://sunxacml.sourceforge.net/.

SWRL Rules (2004). SWRL: A Semantic Web Rule Lan-
guage Combining OWL and RuleML. http://www.
w3.org/Submission/SWRL/.

Uszok, A. and Bradshaw, J. M. (2008). Demonstrating
Selected W3C Policy Languages Interest Group Use
Cases Using the KAoS Policy Services Framework.
In POLICY, pages 233–234. IEEE Computer Society.

XACML Combining Algorithms (2013). OASIS XACML
Version 3.0 Specification, Combining algorithms.
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cs-01-en.pdf. page 5.

XACML Data-Flow model (2013). OASIS XACML
Version 3.0 Specification, Data-flow model.
http://docs.oasis-open.org/xacml/3.0/
xacml-3.0-core-spec-cs-01-en.pdf. pages
19–20.

XACML RFC2904 (2000). RFC2904 - AAA Authoriza-
tion Framework Memo. http://tools.ietf.org/
html/rfc2904.

XACML Standard (2013). OASIS eXtensible Access Con-
trol Markup Language (XACML). https://www.
oasis-open.org/committees/xacml/.

XEngine (2008). XEngine: A Fast and Scalable XACML
Policy Evaluation Engine. http://xacmlpdp.
sourceforge.net/.

APPENDIX

We present the complete XACML code in this ap-
pendix for the example policies mentioned in Section
3. It is shown in Listings 1 and 2.

SECRYPT�2015�-�International�Conference�on�Security�and�Cryptography

134

Listing 1: Example Type 2 policy – XACML specification.

<!�� Rule t o l e t m e d i c a l C o n s u l t a n t w r i t e m e d i c a l R e g u l a t i o n D o c u m e n t ��>
<Rule R u l e Id =” Rule2 ” E f f e c t =” P e r m i t ”>

<T a r g e t>
<S u b j e c t s>

<S u b j e c t>
<S u b j e c t M a t c h MatchId=” u r n : p o l i m i : n a m e s : d b s p : 1 : f u n c t i o n : o n t o l o g y �id�e q u a l ”>

<A t t r i b u t e V a l u e DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ”>
m e d i c a l C o n s u l t a n t

</ A t t r i b u t e V a l u e>
<S u b j e c t A t t r i b u t e D e s i g n a t o r A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : c l a s s ” Mus tBePresen t =” t r u e ”

DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ” />
</ S u b j e c t M a t c h>

</ S u b j e c t>
</ S u b j e c t s>

<R e s o u r c e s>
<Resource>

<ResourceMatch MatchId=” u r n : p o l i m i : n a m e s : d b s p : 1 : f u n c t i o n : o n t o l o g y �id�e q u a l ”>
<A t t r i b u t e V a l u e DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ”>

m e d i c a l R e g u l a t i o n D o c u m e n t
</ A t t r i b u t e V a l u e>
<R e s o u r c e A t t r i b u t e D e s i g n a t o r A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : c l a s s ”

DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ” />
</ ResourceMatch>

</ Resource>
</ R e s o u r c e s>

<A c t i o n s>
<Ac t i on>

<Act ionMatch MatchId=” u r n : p o l i m i : n a m e s : d b s p : 1 : f u n c t i o n : o n t o l o g y �id�e q u a l ”>
<A t t r i b u t e V a l u e DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ”>w r i t e</ A t t r i b u t e V a l u e>
<A c t i o n A t t r i b u t e D e s i g n a t o r DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ”

A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : i d ” />
</ Act ionMatch>

</ A c t i o n>
</ A c t i o n s>

</ T a r g e t>

</ Rule>

Listing 2: Example Type 3 policy – XACML specification.

<!�� Rule t o deny f e m a l e a c c e s s f o r r e a d i n g a n d r o l o g y documents ��>
<Rule R u l e Id =” Rule3 ” E f f e c t =”Deny”>

<T a r g e t>
<S u b j e c t s>

<S u b j e c t>
<S u b j e c t M a t c h MatchId=” u r n : o a s i s : n a m e s : t c : x a c m l : 1 . 0 : f u n c t i o n : s t r i n g �e q u a l ”>

<A t t r i b u t e V a l u e DataType=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”>F</ A t t r i b u t e V a l u e>
<S u b j e c t A t t r i b u t e D e s i g n a t o r A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : d a t a P r o p e r t y : h a s G e n d e r ”

Mus tBePresen t =” t r u e ” DataType=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ” />
</ S u b j e c t M a t c h>

</ S u b j e c t>
</ S u b j e c t s>

<R e s o u r c e s>
<Resource>

<ResourceMatch MatchId=” u r n : p o l i m i : n a m e s : d b s p : 1 : f u n c t i o n : o n t o l o g y �id�e q u a l ”>
<A t t r i b u t e V a l u e DataType=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”>

AndrologyDocument
</ A t t r i b u t e V a l u e>
<R e s o u r c e A t t r i b u t e D e s i g n a t o r A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : c l a s s ”

DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ” />
</ ResourceMatch>

</ Resource>
</ R e s o u r c e s>

<A c t i o n s>
<A ct i on>

<Act ionMatch MatchId=” u r n : p o l i m i : n a m e s : d b s p : 1 : f u n c t i o n : o n t o l o g y �id�e q u a l ”>
<A t t r i b u t e V a l u e DataType=” h t t p : / /www. w3 . org / 2 0 0 1 / XMLSchema# s t r i n g ”>r e a d</ A t t r i b u t e V a l u e>
<A c t i o n A t t r i b u t e D e s i g n a t o r DataType=” u r n : p o l i m i : n a m e s : d b s p : 1 : d a t a �t y p e : o n t o l o g y�i d ”

A t t r i b u t e I d =” u r n : p o l i m i : n a m e s : d b s p : 1 : a t t r i b u t e : i d ” />
</ Act ionMatch>
</ A c t i o n>

</ A c t i o n s>
</ T a r g e t>

</ Rule>

An�OWL-based�XACML�Policy�Framework

135

