Human Factors and Ergonomics Society, 32(1), 61-77.
Alexe, B., Deselaers, T., & Ferrari, V. (2010, June). What
is an object?. In Computer Vision and Pattern
Recognition (CVPR), 2010 IEEE Conference on (pp.
73-80). IEEE.
Alexe, B., Deselaers, T., & Ferrari, V. (2012). Measuring
the objectness of image windows. Pattern Analysis
and Machine Intelligence, IEEE Transactions on,
34(11), 2189-2202.
Chang, K. Y., Liu, T. L., Chen, H. T., & Lai, S. H. (2011,
November). Fusing generic objectness and visual
saliency for salient object detection. In Computer
Vision (ICCV), 2011 IEEE International Conference
on (pp. 914-921). IEEE.
Spampinato, C., & Palazzo, S. (2012, November).
Enhancing object detection performance by integrating
motion objectness and perceptual organization. In
Pattern Recognition (ICPR), 2012 21st International
Conference on (pp. 3640-3643). IEEE.
Cheng, M. M., Zhang, Z., Lin, W. Y., & Torr, P. (2014,
June). BING: Binarized normed gradients for
objectness estimation at 300fps. In Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE
Conference on (pp. 3286-3293). IEEE.
Olshausen, B. A., & Field, D. J. (1997). Sparse coding
with an overcomplete basis set: A strategy employed
by V1?. Vision research, 37(23), 3311-3325.
Mairal, J., Elad, M., & Sapiro, G. (2008). Sparse
representation for color image restoration. Image
Processing, IEEE Transactions on, 17(1), 53-69.
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Ma,
Y. (2009). Robust face recognition via sparse
representation. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 31(2), 210-227.
Ji, Z. J., Wang, W. Q., & Lu, K. (2013). Extract
foreground objects based on sparse model of
spatiotemporal spectrum. In Image Processing (ICIP),
2013 IEEE International Conference on (pp. 3441-
3445). IEEE.
Sun, S. W., Wang, Y. C. F., Huang, F., & Liao, H. Y. M.
(2013). Moving foreground object detection via robust
SIFT trajectories. Journal of Visual Communication
and Image Representation, 24(3), 232-243.
Biswas, S., & Babu, R. V. (2014, October). Sparse
representation based anomaly detection with enhanced
local dictionaries. In Image Processing (ICIP), 2014
IEEE International Conference on (pp. 5532-5536).
IEEE.
Hubel, D. H., & Wiesel, T. N. (1968). Receptive fields and
functional architecture of monkey striate cortex. The
Journal of physiology, 195(1), 215-243.
Liu, C., & Wechsler, H. (2002). Gabor feature based
classification using the enhanced fisher linear
discriminant model for face recognition. Image
processing, IEEE Transactions on, 11(4), 467-476.
Davis, G., Mallat, S., & Avellaneda, M. (1997). Adaptive
greedy approximations. Constructive approximation,
13(1), 57-98.
Donoho, D. L., & Tsaig, Y. (2008). Fast solution of l
1
-
norm minimization problems when the solution may
be sparse. Information Theory, IEEE Transactions on,
54(11), 4789-4812.
Rubinstein, R., Zibulevsky, M., & Elad, M. (2010).
Double sparsity: Learning sparse dictionaries for
sparse signal approximation. Signal Processing, IEEE
Transactions on, 58(3), 1553-1564.
Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD:
An Algorithm for Designing Overcomplete
Dictionaries for Sparse Representation. Signal
Processing, IEEE Transactions on, 54(11), 4311-4322.
Tibshirani, R. (1996). Regression shrinkage and selection
via the lasso. Journal of the Royal Statistical Society.
Series B (Methodological), 267-288.
Perazzi, F., Krahenbuhl, P., Pritch, Y., & Hornung, A.
(2012, June). Saliency filters: Contrast based filtering
for salient region detection. In Computer Vision and
Pattern Recognition (CVPR), 2012 IEEE Conference
on (pp. 733-740). IEEE.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., & Zisserman, A. (2008). The PASCAL Visual
Object Classes Challenge 2007 (VOC 2007) Results
(2007). In URL http://www.pascal-network.org/challe-
nges/VOC/voc2007/workshop/index.html.
SalientForegroundObjectDetectionbasedonSparseReconstructionforArtificialAwareness
437