cation to a railway power simulator. Simulation Mod-
elling Practice and Theory, 55(0):46 – 62.
Carrano, E., Soares, L., Takahashi, R., Saldanha, R., and
Neto, O. (2006). Electric distribution network mul-
tiobjective design using a problem-specific genetic
algorithm. Power Delivery, IEEE Transactions on,
21(2):995–1005.
Carrano, E., Takahashi, R., Cardoso, E., Saldanha, R., and
Neto, O. (2005). Optimal substation location and en-
ergy distribution network design using a hybrid ga-
bfgs algorithm. Generation, Transmission and Distri-
bution, IEE Proceedings-, 152(6):919–926.
CENELEC (2012). UNE-EN 50388: Railway Applications
- Power supply and rolling stock - Technical crite-
ria for the coordination between power supply (sub-
station) and rolling stock to achieve interoperability.
AENOR.
CENELEC (2015). prEN 50641 (draft): Railway Applica-
tions - - Fixed installations - Requirements for the val-
idation of simulation tools used for the design of trac-
tion power supply systems. CENELEC: Europeean
Committee for Electrotechnical Standardization.
Chang, C., Wang, W., Liew, A., and Wen, F. (1998). Bi-
criterion optimisation for traction substations in mass
rapid transit systems using genetic algorithm. Electric
Power Applications, IEE Proceedings -, 145(1):49–
56.
Chang, C., Wang, W., Liew, A., Wen, F., and Srinivasan, D.
(1995). Genetic algorithm based bicriterion optimisa-
tion for traction substations in dc railway system. In
Evolutionary Computation, 1995., IEEE International
Conference on, volume 1, pages 11–.
Dean, J. and Ghemawat, S. (2008). Mapreduce: simplified
data processing on large clusters. Communications of
the ACM, 51(1):107–113.
Decraene, J., Zeng, F., Low, M. Y. H., Cai, W., Cheng, Y. Y.,
and Choo, C. S. (2011). Evolutionary design of exper-
iments using the mapreduce framework. In Proceed-
ings of the 2011 Summer Computer Simulation Con-
ference, SCSC ’11, pages 76–83, Vista, CA. Society
for Modeling & Simulation International.
Deelman, E., Singh, G., Livny, M., Berriman, B., and Good,
J. (2008). The cost of doing science on the cloud: The
montage example. In High Performance Computing,
Networking, Storage and Analysis, 2008. SC 2008. In-
ternational Conference for, pages 1–12.
del Valle, Y., Venayagamoorthy, G., Mohagheghi, S., Her-
nandez, J.-C., and Harley, R. (2008). Particle swarm
optimization: Basic concepts, variants and applica-
tions in power systems. Evolutionary Computation,
IEEE Transactions on, 12(2):171–195.
Garc
´
ıa, A., G
´
omez, C., Garc
´
ıa-Carballeira, F., and Car-
retero, J. (2014). Enhancing the structure of railway
infrastructure simulators. In Proceedings of the 1st
International Conference on Engineering and Applied
Sciences Optimization (OPT-i), pages 352–363.
Gomez, J., Khodr, H., De Oliveira, P., Ocque, L., Yusta, J.,
Villasana, R., and Urdaneta, A. (2004). Ant colony
system algorithm for the planning of primary distribu-
tion circuits. Power Systems, IEEE Transactions on,
19(2):996–1004.
Jahn, S., Margraf, M., Habchi, V., and
Jacob, R. Qucs technical papers.
http://qucs.sourceforge.net/tech/node14.html. Last
accessed April 2015.
Kim, B. S., Lee, S. J., Kim, T. G., and Song, H. S. (2014).
Mapreduce based experimental frame for parallel and
distributed simulation using hadoop platform. In 28th
European Conference on Modelling and Simulation,
ECMS 2014, Brescia, Italy, May 27-30, 2014, pages
664–669.
Liu, Z., Liu, F., Zhang, B., Ma, F., and Gao, S. (2010).
Research on cloud computing and its application in
railway. Beijing Jiaotong Daxue Xuebao(Journal of
Beijing Jiaotong University), 34(5):14–19.
Mendoza, F., Bernal-Agustin, J., and Dominguez-Navarro,
J. (2006). Nsga and spea applied to multiobjective
design of power distribution systems. Power Systems,
IEEE Transactions on, 21(4):1938–1945.
Nguyen, P. H., Kling, W. L., and Ribeiro, P. F. (2011). Smart
power router: a flexible agent-based converter inter-
face in active distribution networks. Smart Grid, IEEE
Transactions on, 2(3):487–495.
Parada, V., Ferland, J., Arias, M., and Daniels, K. (2004).
Optimization of electrical distribution feeders using
simulated annealing. Power Delivery, IEEE Transac-
tions on, 19(3):1135–1141.
Pilo, E., Mazumder, S., and Gonzalez-Franco, I. (2015).
Smart electrical infrastructure for ac-fed railways with
neutral zones. Intelligent Transportation Systems,
IEEE Transactions on, 16(2):642–652.
Pilo, E., Rouco, R., Fernandez, A., and Hernandez-Velilla,
A. (2000). A simulation tool for the design of the
electrical supply system of high-speed railway lines.
In Power Engineering Society Summer Meeting, 2000.
IEEE, volume 2, pages 1053–1058 vol. 2.
Radenski, A. (2013). Using mapreduce streaming for dis-
tributed life simulation on the cloud. In Proceedings
of the Twelfth European Conference on the Synthesis
and Simulation of Living Systems. ECAL 2013., pages
284–291.
Ramirez-Rosado, I. and Bernal-Agustin, J. (1998). Genetic
algorithms applied to the design of large power dis-
tribution systems. Power Systems, IEEE Transactions
on, 13(2):696–703.
Ramirez-Rosado, I. and Dominguez-Navarro, J. (2004).
Possibilistic model based on fuzzy sets for the mul-
tiobjective optimal planning of electric power distri-
bution networks. Power Systems, IEEE Transactions
on, 19(4):1801–1810.
Soler, M., Lopez, J., Mera Sanchez de Pedro, J., and
Maroto, J. (2015). Methodology for multiobjective
optimization of the ac railway power supply sys-
tem. Intelligent Transportation Systems, IEEE Trans-
actions on, PP(99):1–12.
Strbac, G. and Djapic, P. (1995). A genetic based fuzzy
approach to optimisation of electrical distribution net-
works. In Genetic Algorithms in Engineering Systems:
Innovations and Applications, 1995. GALESIA. First
International Conference on (Conf. Publ. No. 414),
pages 194–199.
SIMULTECH2015-5thInternationalConferenceonSimulationandModelingMethodologies,Technologiesand
Applications
438