Dictionary Learning: From Data to Sparsity Via Clustering

Rajesh Bhatt, Venkatesh K. Subramanian

2015

Abstract

Sparse representation based image and video processing have recently drawn much attention. Dictionary learning is an essential task in this framework. Our novel proposition involves direct computation of the dictionary by analyzing the distribution of training data in the metric space. The resulting representation is applied in the domain of grey scale image denoising. Denoising is one of the fundamental problems in image processing. Sparse representation deals efficiently with this problem. In this regard, dictionary learning from noisy images, improves denoising performance. Experimental results indicate that our proposed approach outperforms the ones using K-SVD for additive high-level Gaussian noise while for the medium range of noise level, our results are comparable.

References

  1. Aharon, M., Elad, M., and Bruckstein, A. (2006). K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transaction on Signal Processing, 54(11):4311-4322.
  2. Chatterjee, P. and Milanfar, P. (2010). Is denoising dead? IEEE Transactions on Image Processing, 19(4):895 - 911.
  3. Chatterjee, S., Sundman, D., and Skoglund, M. (2011). Look ahead orthogonal matching pursuit. In IEEE Int. Conf. Acoustics Speech and Signal Processing (ICASSP).
  4. Dabov, K., Foi, A., Katkovnik, V., and Egiazarian, K. (2007). Image denoising by sparse 3-d transformdomain collaborative filtering. IEEE Transactions on Image Processing, 16(8):2080 -2095.
  5. Donoho, D., Elad, M., and Temlyakov, V. (2006a). Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Transactions on Information Theory, 52(1):6 - 18.
  6. Donoho, D., Tsaig, Y., Drori, I., and Starck, J. (2006b). Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. Technical report.
  7. Elad, M. and Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 15(12):3736 -3745.
  8. Engan, K., Aase, S. O., and Hakon Husoy, J. (1999). Method of optimal directions for frame design. In Proceedings ICASSP'99 - IEEE International Conference on Acoustics, Speech, and Signal Processing, volume 5, pages 2443-2446.
  9. Mairal, J., Bach, F., Ponce, J., Sapiro, G., and Zisserman, A. (2009). Non-local sparse models for image restoration. In IEEE 12th International Conference on Computer Vision, pages 2272 -2279.
  10. Needell, D. and Tropp, J. (2009). Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal., 26(3):301-321.
  11. Needell, D. and Vershynin, R. (2009). Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Computational Mathematics, 9:317-334.
  12. Tropp, J. and Gilbert, A. (2007). Signal recovery from random measurements via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12):4655-4666.
  13. Yang, J., Wright, J., Huang, T., and Ma, Y. (2008). Image super-resolution as sparse representation of raw image patches. In IEEE Conference on Computer Vision and Pattern Recognition(CVPR), 2008, pages 1 -8.
  14. Zepeda, J., Guillemot, C., and Kijak, E. (2011). Image compression using sparse representations and the iteration-tuned and aligned dictionary. IEEE Journal of Selected Topics in Signal Processing,, 5(5):1061 - 1073.
  15. Zhang, L., Dong, W., Zhang, D., and Shi, G. (2010). Twostage image denoising by principal component analysis with local pixel grouping. Pattern Recognition, 43(4):1531 - 1549.
Download


Paper Citation


in Harvard Style

Bhatt R. and K. Subramanian V. (2015). Dictionary Learning: From Data to Sparsity Via Clustering . In Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO, ISBN 978-989-758-122-9, pages 635-640. DOI: 10.5220/0005573706350640


in Bibtex Style

@conference{icinco15,
author={Rajesh Bhatt and Venkatesh K. Subramanian},
title={Dictionary Learning: From Data to Sparsity Via Clustering},
booktitle={Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,},
year={2015},
pages={635-640},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005573706350640},
isbn={978-989-758-122-9},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 12th International Conference on Informatics in Control, Automation and Robotics - Volume 1: ICINCO,
TI - Dictionary Learning: From Data to Sparsity Via Clustering
SN - 978-989-758-122-9
AU - Bhatt R.
AU - K. Subramanian V.
PY - 2015
SP - 635
EP - 640
DO - 10.5220/0005573706350640