optimization through techniques based on Lyapunov
stability as Linear Matrix Inequalities (LMI).
REFERENCES
Al-Muthairi, M. S. (1994). Quadratic stabilization of
continuous time systems with state-delay and norm-
bounded time-varying uncertainties. IEEE Trans.
Automat. Contr., vol. 39.
Artstein, Z. (1982). Linear systems with delayed control:
A reduction. 4(27).
Ballance, W. C. (1998). QFT Design for Uncertain
Nonminimum Phase and Unstable Plants.
Philadelphia, Pennsylvania: Proceedings of the
American Control Conference.
Barbot, W. P. (2002). Sliding Mode Control in
Engineering. New York: Marcel Dekker.
Bellm, R. a. (1963). Differential-Difference Equations.
New York: Academic.
Bemporad, A., & Morari, M. (2007). Robust model
predictive control: A survey. 245.
Bodson, S. S. (1989). Adaptive Control: Stability,
Convergence, and Robustness. New Jersey: Prentice
Hall.
Boje, E. (2000). Finding Nonconvex Hulls of QFT
Templates. Trans. ASME, VOl. 122.
Bordons, E. F. (2007). Model Predictuve Control. London:
Springer-Verlag.
Camacho, J. N.-R. (2007). Control of Dead-Time
Processes. London: Springer-Verlag London Limited.
Chen, D. J. (1998). Symbolic Computation in Value Sets
of Plants with Uncertain Parameters. Processing
UKACC International Conference Control.
Datko, R. (1978). A procedure for determination of the
exponential stability. 36(279-292).
Diederich, H. a. (2005). Mathematical Systems Theory I:
Modelling, State Space Analysis, Stability and
Robustness. Berlin: Springer Berlin Heidelberg.
Diekmann, O., Van Gils, S., & Verduyn-Lunel, S. a.
(1995). Delay Equations, Functional-, Complex and
Nonlinear Analysis. New York: Springer-Verlag.
Esfanjani, R., Reble, M., Munz, U., Nikravesh, S., &
Allgower, F. (2009). Model predictive control of
constrained nonlinear time-delay systems. IEEE
Conference on Decision and Control, 2009 held
jointly with the 2009 28th Chinese Control
Conference. CDC/CCC 2009. Proceedings of the 48th
Furutani, E. a. (1998). Robust Stability of state-predictive
and Smith Control Systems for Plants with a pure
Delay. 8(18).
Gouaisbaut, F., Dambrine, M. a., & J.P. (2002). Robust
Control of Delay systems: A Sliding Mode Control
Design via LMI. 46(4).
Guzmán, J., Álamo, T., Berenguel, M., Dormido, S., &
Camacho, E. (2007). Robust GPC-QFT approach
using Linear Matrix Inequalities. Kos, Greece:
European Control Conference ECC2007.
Hägglund, K. J. (2009). Control PID avanzado. Madrid:
Pearson Educación.
Hale, K. a. (1993). Introduction to Functional Differential.
New York: Springer-Verlag.
Hohenbichler., N. (2009). All Stabilizing PID Controllers
for Time Delay Systems. 45(11).
Horowitz, I. (1992). Quantitative Feedback Design
Theory. Boulder, Colorado: QFT Publications.
Ioannou, P. A. (1996). Robust Adaptive Control.
University of Michigan: Prentice Hall.
Jin-quan, H., & Lewis, F. (2003). Neural-network
predictive control for nonlinear dynamic systems with
time-delay. IEEE Transactions on Neural Networks .
Kolmanovskii, V. B., Niculescu, S.-I., & Gu, K. (1999).
Delay Effects on Stability: A Survey. Arizona USA:
Proceedings of Conference on Decision & Control.
Maciejowski, J. (2000). Predictive Control with
Constraints. Prentice Hall.
Manitius, A., & Olbrot, A. (1979). Finite spectrum
assignment problem for systems with delays. 24(4).
Martín-Romero, J. M.-R. (2007). QFT Templates for
Plants with a High Number of Uncertainty Parameters.
IEEE Transactions on Automatic Control, Vol. 52,
No.4.
Martín-Romero, J., & García-Sanz, M. G.-M. (2007).
Analytical Formulation to Compute QFT Templates
for Plants with a High Number of Uncertain
Parameters. Athens, Greece: Mediterranean
Conference on Control and Automation.
Matušů, R. (2007). Doctoral Thesis. Robust Control of
Systems with Parametric Uncertainty:An Algebraic
Approach. Zlín, Czech Republic: Tomas Bata
University in Zlín.
Moheimani, S. (2001). Perspectives in Robust Control.
Springer Science & Business Media.
Namaki-Shoushtari, O. a. (2009). Design of Decentralized
Supervisory Based Switching QFT Controller for
Uncertain Multivariable Plants. Shanghai, China: Joint
48th IEEE Conference on Decision and Control and
28th Chinese Control Conference.
Niculescu, S. I. (2001). Delay Effects on Stability: A
Robust Control Approach. Heidelberg: Springer-
Verlag.
Niculescu, W. M.-I. (2007). Stability and Stabilization of
Time-Delay Systems: An eigenvalue approach.
Philadelphia, PA: SIAM.
Olbrot, A. M. (1979). Finite spectrum assignment problem
for systems with delays. 24(4).
Oliveira, V., Cossi, L., & Teixeira, M. a. (2009). Synthesis
of PID controllers for a class of time delay systems.
7(45).
Ortega, M. G. & Rubio, F. (2004). Systematic Design of
Weighting Matrices for the H∞ Mixed Sensitivity
Problem. 14.
Peiwen, Z., & Qiang, Y. Y. (2000). Multivariable QFT
Control of Coaxial Double Brushless DC Motors
System. Proceedings of the 2000 American Control
Conference .
Pop, C., Dulf, E., De Keyser, R., Ionescu, C., Muresan, B.,
& Festila, C. (2011). Predictive control of the
multivariable time delay processes in an isotope
DesignofRobustControlStrategyforNon-linearMultivariableSystemswithDelay,ParametricUncertaintyandExternal
Disturbances
43