6 CONCLUSIONS
In this paper, we have introduced M-fuzzy semi-
quantales and (L, M)-quasi-fuzzy topological spaces.
The former here fuzzify semi-quantales of Rod-
abaugh (Rodabaugh, 2007), while the latter unify
(L, M)-fuzzy topological spaces of Kubiak and Sostak
(Kubiak and
ˇ
Sostak, 2009), L-quasi-fuzzy topological
spaces of Rodabaugh (Rodabaugh, 2007) and L-fuzzy
topological spaces of H
¨
ohle and
ˇ
Sostak (H
¨
ohle and
ˇ
Sostak, 1999). We then have constructed their cat-
egories that enable us to extend the famous Papert-
Papert-Isbell adjunction (Isbell, 1972; Jhonstone,
1986; Papert and Papert, 1957/1958) to the present
setting. One of the central results of this paper is
that there exists a dual adjunction between the cat-
egory of (L, M)-quasi-fuzzy topological spaces and
the category of M-fuzzy semi-quantales. As the other
one, it is shown that this adjunction gives rise to
a dual equivalence between the category of (L, M)-
sober (L, M)-quasi-fuzzy topological spaces and the
category of (L, M)-spatial M-fuzzy semi-quantales.
We finally demonstrate that analogues of these results
are also valid for the categories of strong M-fuzzy
semi-quantales and of unital M-fuzzy semi-quantales.
REFERENCES
Ad
´
amek, J., Herrlich, H. and Strecker, G. E. (1990). Ab-
stract and Concrete Categories. New York: John Wi-
ley & Sons..
B
ˇ
elohl
´
avek, R. (2002). Fuzzy Relational Systems. New
York: Kluwer Academic Publishers.
Clark, D. M. and Davey, B. A. (1998). Natural Dualities for
the Working Algebraist. Cambrige: Cambridge Uni-
versity Press.
Demirci, M. (2010). Pointed Semi-Quantales and Lattice-
Valued Topological Spaces. Fuzzy Sets and Systems,
161, 1224-1241.
Demirci, M. (2014). Fundamental Duality of Abstract Cat-
egories and Its Applications. Fuzzy Sets and Systems,
256, 73-94.
Ern
´
e, M. (2004). General Stone duality. Topology and Its
Applications, 137, 125-158.
H
´
ajek, P. (1998). Metamathematics of Fuzzy Logics. Dor-
drecht: Kluwer Academic Publishers.
H
¨
ohle, U. (2001). Many Valued Topology and Its Applica-
tions. Boston: Kluwer Academic Publishers.
H
¨
ohle, U. and
ˇ
Sostak, A. P. (1999). Axiomatic Founda-
tions of Fixed-Basis Fuzzy Topology. In H
¨
ohle, U. and
Rodabaugh, S. E. (Eds.), Mathematics of Fuzzy Sets:
Logic, Topology and Measure Theory (pp.123-272).
Boston: Kluwer Academic Publishers.
Isbell, J. R. (1972). Atomless Parts of Spaces. Mathematica
Scandinavica, 31, 5-32.
Johnstone, P.T. (1986). Stone Spaces. Cambridge: Cam-
bridge University Press.
Klement, E. P., Mesiar, R. and Pap, E. (2000). Triangular
Norms. Dordrecht: Kluwer Academic Publishers.
Kubiak, T. and
ˇ
Sostak, A. (2009). Foundations of the The-
ory of (L,M)-fuzzy Topological Spaces. In Boden-
hofer, U., DeBaets, B., Klement, E. P. and Saminger-
Platz, S. (Eds.), Abstracts of the 30th Linz Seminar on
Fuzzy Set Theory (pp. 70-73). Linz: Johannes Kepler
Universit
¨
at.
Lawson, J. D. (1979). The Duality of Continuous Posets.
Houston Journal of Mathematics, 5, 357-386. Math. 5
(1979) 357–386.
Nov
´
ak, V., Perfilieva, I. and Mo
ˇ
cko
ˇ
r, J. (1999). Mathe-
matical Principles of Fuzzy Logic. Dordrecht: Kluwer
Academic Publishers.
Papert, D. and Papert, S. (1957/1958). Sur Les Treillis Des
Ouverts Et Les Paratopologies. Seminaire Ehresmann.
Topologie et Geometrie Differentielle, 1, 1-9.
Porst, H. E. and Tholen, W. (1990). Concrete Dualities. In
Herrlich, H. and Porst, H. E. (Eds.), Category Theory
at Work (pp. 111-136). Berlin: Heldermann Verlag.
Rodabaugh, S. E. (2007). Relationship of Algebraic Theo-
ries to Powerset Theories and Fuzzy Topological The-
ories for Lattice-Valued Mathematics. International
Journal of Mathematics and Mathematical Sciences,
71 pages. doi:10.1155/2007/43645.
Rosenthal, K. I. (1990). Quantales and Their Applications.
New York: Longman Scientific and Technical.
Solovyov, S. A. (2008). Sobriety and Spatiality in Varieties
of Algebras. Fuzzy Sets and Systems, 159, 2567-2585.
Stone, M. H. (1936). The Theory of Representations
for Boolean Algebras. Transactions of the American
Mathematical Society, 40, 37-111.
Yao, W. (2012). A Survey of Fuzzifications of Frames, the
Papert-Papert-Isbell Adjunction and Sobriety. Fuzzy
Sets and Systems, 190, 63-81.
Fuzzy Semi-Quantales, (L,M) Quasi-Fuzzy Topological Spaces and Their Duality
111