The COS is also subject to the nonlinear phenomenon
of hysteresis that characterizes multistability in
perception.
It is important to use a variety of strategies to test
two hypotheses that arise from the work reported
here: (1) a COS of excitatory recurrent conductance
vectors is a model of large-scale order within
recurrent network interactions; and (2) such a COS is
an objective signature of the unity or oneness aspect
of a visual object.
ACKNOWLEDGEMENTS
The author wishes to thank Dr. Charles Lamb of the
IUP Department of Mathematics for the many
positive contributions that he has made to the work
reported here in our numerous discussions. The
author also thanks Mr. Ian Bright who collected the
pilot data reported in Section 4.1 and who contributed
in all aspects of that work. Two anonymous reviewers
are also thanked for their thoughtful and useful
comments.
REFERENCES
Block, N. (2001). Paradox and cross purposes in recent
work on consciousness. Cognition, 79, 347-357.
Block, N. (2007). Consciousness, accessibility, and the
mesh between psychology and neuroscience.
Behavioral and Brain Sciences, 30, 481-499.
Chalmers, D. J. (1996). The conscious mind: In search of a
fundamental theory. New York, NY: Oxford University
Press.
Chen, L. (2005). The topological approach to perceptual
organization. Visual Cognition, 12(4), 553-637.
Dehaene, S. (2014). Consciousness and the brain:
Deciphering how the brain codes our thoughts. New
York, NY: Penguin Books.
Edelman, G. M., Gally, J. A., Baars, B. J. (2011). Biology
of consciousness. Frontiers in Psychology, doi:
10.3389/fpsyg.2011.00004.
Haken, H. (1996). Principles of brain functioning: A
synergetic approach to brain activity, behavior and
cognition. New York, NY: Springer.
Huang, Y., Huang, K., Tan, T., Tao, D. (2010). A novel
visual organization based on topological perception.
Computer vision – ACCV 2009. Lecture notes in
computer science, Volume 5994, 180-189.
Hut, P., Shepard, R. N. (1996). Turning ‘the hard problem’
upside down & sideways. Journal of Consciousness
Studies, 3, 313-329.
Indiveri G., Linares-Barranco B., Hamilton T.J., van Schaik
A., Etienne- Cummings R., Delbruck T., Liu S-C.,
Dudek P., Häfliger P., Renaud S., Schemmel J.,
Cauwenberghs G., Arthur J., Hynna K., Folowosele F.,
Saïghi S., Serrano- Gotarredona T., Wijekoon J., Wang
Y. Boahen K. (2011). Neuromorphic silicon neuron
circuits. Frontiers in Neuroscience, 5:73. doi:
10.3389/fnins.2011.00073.
Jones, A., Cardoza, J., Liu, D. J., Jayet Bray, L. C., Dascalu,
S. M., Louis, S. J., Harris Jr., F. C. (2013). A novel 3D
visualization tool for large-scale neural networks. BMC
Neuroscience 2013, 14 (Suppl 1):P158
Larsen, A., Madsen, K. H., Lund, T.E., Bundesen, C.
(2006). Images of illusory motion in primary visual
cortex. Journal of Cognitive Neuroscience, 18(7),
1174-1180.
Minsky, M. L., Papert, S. A. (1998). Perceptrons: An
introduction to computational geometry (Expanded
edition).Cambridge, MA: MIT Press.
O’Reilly, R. C., Munakata, Y. (2000). Computational
explorations in cognitive neuroscience: Understanding
the mind by simulating the brain. Cambridge, MA: MIT
Press.
Pavloski, R. (2011). Learning how to get from properties of
perception to those of the neural substrate and back: An
ongoing task of Gestalt Psychology. Humana.Mente
Journal of Philosophical Studies, 17, 69-94.
Peters, J. F., Wasilewski, P. (2012). Tolerance spaces:
Origins, theoretical aspects and applications.
Information Sciences, 195, 211-225.
Pomerantz, J. R. (2003). Wholes, holes, and basic features
in vision. Trends in Cognitive Sciences, 7(11), 471-473.
Poon, C.-S., Zhou, K. (2011). Neuromorphic silicon
neurons and large-scale neural networks: Challenges
and opportunities. Frontiers in Neuroscience, 5:108.
doi: 10.3389/ fnins.2011.00108.
Rangan, A. V., Cai, D., McLaughlin, D. W. (2005).
Modeling the spatiotemporal cortical activity
associated with the line-motion illusion in primary
visual cortex. Proceedings of the National Academy of
Sciences, 102(52), 18793-18800.
Rangan, A. V., Tao, L., Kovacic, G., Cai, D. (2009).
Multiscale modeling of the primary visual cortex. IEEE
Engineering in Medicine and Biology Magazine, May
2009, 19-24.
Roelfsema, P. R. Houtkamp, R. (2011). Incremental
grouping of image elements in vision. Attention
Perception & Psychophysics, 73, 2542-2572.
Sterratt, D., Graham, B., Gillies, A., Willshaw, D. (2011).
Principles of computational modelling in neuroscience.
New York, NY: Oxford University Press.
Tuller, B., Case, P., Ding, M., Kelso, J.A.S. (1994). The
nonlinear dynamics of speech categorization. Journal
of Experimental Psychology: Human Perception and
Performance, 20(1), 3-16.
Zhang, J. (2005). Object oneness: The essence of the
topological approach to perception. Visual Cognition,
12(4), 683-690.