Carvalho, R. N., Laskey, K. B., and da Costa, P. C. G.
(2013). PR-OWL 2.0 - bridging the gap to OWL
semantics. In Bobillo, F., da Costa, P. C. G.,
d’Amato, C., Fanizzi, N., Laskey, K. B., Laskey, K. J.,
Lukasiewicz, T., Nickles, M., and Pool, M., editors,
Uncertainty Reasoning for the Semantic Web II, Inter-
national Workshops URSW 2008-2010 Held at ISWC
and UniDL 2010 Held at FLoC, Revised Selected Pa-
pers, volume 7123 of Lecture Notes in Computer Sci-
ence, pages 1–18. Springer.
da Costa, P. C. G., Laskey, K. B., and Laskey, K. J. (2008).
PR-OWL: A bayesian ontology language for the se-
mantic web. In da Costa, P. C. G., d’Amato, C.,
Fanizzi, N., Laskey, K. B., Laskey, K. J., Lukasiewicz,
T., Nickles, M., and Pool, M., editors, Uncertainty
Reasoning for the Semantic Web I, ISWC International
Workshops, URSW 2005-2007, Revised Selected and
Invited Papers, volume 5327 of Lecture Notes in Com-
puter Science, pages 88–107. Springer.
Despres, S. (2014). Construction d’une ontologie mod-
ulaire pour l’univers de la cuisine num´erique. In
Catherine Faron-Zucker. IC - 25´emes Journ´ees fran-
cophones d’Ing´enierie des Connaissances, May 2014,
Clermont-Ferrand, France, number 1, pages pp.27–
38.
Devitt, A., Danev, B., and Matusikova, K. (2006). Con-
structing bayesian networks automatically using on-
tologies. Applied Ontology, 0.
Doan, A., Halevy, A. Y., and Ives, Z. G. (2012). Principles
of Data Integration. Morgan Kaufmann.
Fenz, S. (2012). An ontology-based approach for construct-
ing bayesian networks. Data Knowl. Eng., 73:73–88.
Fridman Noy, N. (2004). Semantic integration: A sur-
vey of ontology-based approaches. SIGMOD Record,
33(4):65–70.
Friedman, N., Getoor, L., Koller, D., and Pfeffer, A. (1999).
Learning probabilistic relational models. In Dean,
T., editor, Proceedings of the Sixteenth International
Joint Conference on Artificial Intelligence, IJCAI 99,
Stockholm, Sweden, July 31 - August 6, 1999. 2 Vol-
umes, 1450 pages, pages 1300–1309. Morgan Kauf-
mann.
Guarino, N., Oberle, D., and Staab, S. (2009). What is an
ontology? In Staab, S. and Studer, R., editors, Hand-
book on Ontologies, International Handbooks on In-
formation Systems, pages 1–17. Springer Berlin Hei-
delberg.
Helsper, E. M. and van der Gaag, L. C. (2002). Building
bayesian networks through ontologies. In van Harme-
len, F., editor, Proceedings of the 15th Eureopean
Conference on Artificial Intelligence, ECAI’2002,
Lyon, France, July 2002, pages 680–684. IOS Press.
Hobbs, J. R. and Pan, F. (2004). An ontology of time for the
semantic web. ACM Trans. Asian Lang. Inf. Process.,
3(1):66–85.
Ishak, M. B., Leray, P., and Amor, N. B. (2011). A two-way
approach for probabilistic graphical models structure
learning and ontology enrichment. In Filipe, J. and Di-
etz, J. L. G., editors, KEOD 2011 - Proceedings of the
International Conference on Knowledge Engineering
and Ontology Development, Paris, France, 26-29 Oc-
tober, 2011, pages 189–194. SciTePress.
Koller, D. and Friedman, N. (2009). Probabilistic Graph-
ical Models: Principles and Techniques - Adaptive
Computation and Machine Learning. The MIT Press.
Lukasiewicz, T. and Straccia, U. (2008). Managing uncer-
tainty and vagueness in description logics for the se-
mantic web. Web Semantics: Science, Services and
Agents on the World Wide Web, 6(4):291 – 308. Se-
mantic Web Challenge 2006/2007.
Muljarto, A., Salmon, J., Neveu, P., Charnomordic, B., and
Buche, P. (2014). Ontology-based model for food
transformation processes - application to winemaking.
In Closs, S., Studer, R., Garoufallou, E., and Sicilia,
M., editors, Metadata and Semantics Research - 8th
Research Conference, MTSR 2014, Karlsruhe, Ger-
many, November 27-29, 2014. Proceedings, volume
478 of Communications in Computer and Information
Science, pages 329–343. Springer.
Murphy, K. P. (2002). Dynamic bayesian networks: repre-
sentation, inference and learning. PhD thesis, Univer-
sity of California, Berkeley.
Pan, R., Ding, Z., Yu, Y., and Peng, Y. (2005). A bayesian
network approach to ontology mapping. In Gil, Y.,
Motta, E., Benjamins, V. R., and Musen, M. A., ed-
itors, The Semantic Web - ISWC 2005, 4th Interna-
tional Semantic Web Conference, ISWC 2005, Gal-
way, Ireland, November 6-10, 2005, Proceedings, vol-
ume 3729 of Lecture Notes in Computer Science,
pages 563–577. Springer.
Qi, G., Ji, Q., Pan, J. Z., and Du, J. (2010). Possdl - A possi-
bilistic DL reasoner for uncertainty reasoning and in-
consistency handling. In The Semantic Web: Research
and Applications, 7th Extended Semantic Web Confer-
ence, ESWC 2010, Heraklion, Crete, Greece, May 30
- June 3, 2010, Proceedings, Part II, pages 416–420.
Sa¨ıs, F. and Thomopoulos, R. (2014). Ontology-aware pre-
diction from rules: A reconciliation-based approach.
Knowl.-Based Syst., 67:117–130.
Torti, L., Wuillemin, P.-H., and Gonzales, C. (2010). Re-
inforcing the Object-Oriented Aspect of Probabilistic
Relational Models. In Proceedings of the 5th Proba-
bilistic Graphical Models, pages 273–280.
Truong, B. A., Lee, Y., and Lee, S. (2005). A unified con-
text model: Bringing probabilistic models to context
ontology. In Enokido, T., Yan, L., Xiao, B., Kim,
D., Dai, Y., and Yang, L. T., editors, Embedded and
Ubiquitous Computing - EUC 2005 Workshops, EUC
2005 Workshops: UISW, NCUS, SecUbiq, USN, and
TAUES, Nagasaki, Japan, December 6-9, 2005, Pro-
ceedings, volume 3823 of Lecture Notes in Computer
Science, pages 566–575. Springer.
Wuillemin, P. and Torti, L. (2012). Structured probabilistic
inference. Int. J. Approx. Reasoning, 53(7):946–968.
Yang, Y. and Calmet, J. (2005). Ontobayes: An ontology-
driven uncertainty model. In 2005 International
Conference on Computational Intelligence for Mod-
elling Control and Automation (CIMCA 2005), Inter-
national Conference on Intelligent Agents, Web Tech-
nologies and Internet Commerce (IAWTIC 2005), 28-
30 November 2005, Vienna, Austria, pages 457–463.
IEEE Computer Society.