generalized fuzzy numbers”, Expert System with
Applications, vol. 38.
Cheng, C. H. 1998. A new approach for ranking fuzzy
numbers by distance method, Fuzzy Sets and System,
vol. 95.
Chu C. T., Tsao, C. T. 2002.Ranking fuzzy numbers with
an area between the centroid point and original point,
Computer and Mathematics with Applications, vol. 43.
Coupland, S., John, R. 2003.An approach to type-2 fuzzy
arithmetic, Proceeding U.K. Workshop Computational
Intelligent.
Dat, L. Q., Yu, V. F., Chou, S. Y. 2012. An improved
ranking method for fuzzy numbers based on the
centroid index, International Journal of Fuzzy
Systems, vol. 14(3).
Deng, H. 2014. Comparing and ranking fuzzy numbers
using ideal solutions, Applied Mathematical
Modelling, vol. 38.
Ebrahimnejad, S., Mousavi, S. M., Moghaddam, R. T.,
Hashemi, H., Vahdani, B. 2012.A novel two – phase
group decision making approach for construction
project selection in a fuzzy environment, Applied
Mathematical Modelling, vol. 36 (9).
Greenfield, S., Chiclana, F. 2013.Accuracy and complexity
evaluation of defuzzification strategies for the
discretised interval type – 2 fuzzy se”, International
Journal of Approximate Reasoning, vol. 54(8).
Hu, J., Zhang, Y., Chen X., Liu, Y. 2013. Multi-criteria
decision making method based on possibility degree of
interval type-2 fuzzy number, Knowledge-Based
Systems, vol. 43.
Jain, R. 1976. Decision-making in the presence of fuzzy
variable, IEEE Transactions on Man and Cybernetic,
vol. 6.
John, R. I., Innocent, P. R., Barnes, M. R. 2000. Neuro-
fuzzy clustering of radiographic tibia image data using
type-2 fuzzy sets, Information Sciences, vol. 125.
Kumar, A., Singh, P., Kaur, P., Kaur, A. 2010. A new
approach for ranking generalized trapezoidal fuzzy
numbers”, World Academy of Science, Engineering
and Technology, vol. 68.
Mendel J. M., John, R. I. 2002. Type-2 fuzzy sets made
simple, IEEE Trans. Fuzzy Syst., vol. 10.
Mendel, J. M. 2001. Uncertain Rule-Based Fuzzy Logic
Systems .Introduction and New Directions. Upper
Saddle River, N J: Prentice-Hall.
Morais D. C., Almeida, A. T. 2012. Group decision
making on water resources based on analysis of
individual rankings, Omega, vol. 40 (1).
Nagy, K., Takács, M. 2008. Type-2 fuzzy sets and SSAD as
a possible application, Acta Polytechnica Hungarica,
vol. 5.
Nie, M., Tan, W. W. 2008. Towards an efficient type-
reduction method for interval type-2 fuzzy logic
systems, Proceedings of FUZZ-IEEE 2008, Hong
Kong.
Shieh, B. S. 2007. An approach to centroids of fuzzy
numbers, International Journal of Fuzzy Systems,
vol.9.
Tsoukalas, L. H., Urigh, R.E. 1997. Fuzzy and Neural
Approaches in Engineering.New York: Wiley.
Wallsten, T. S., Budescu, D.V. 1995. A review of human
linguistic probability processing: general principles
and empirical evidence, The KnowledgeEngineering
Review, vol. 10(1).
Wu, D., Mendel, J-M. 2009. A comparative study of
ranking methods, similarity measures and uncertainty
measures for interval type-2 fuzzysets, Information
Sciences, vol. 179.
Wu, D., Wu D. D., Zhang, Y, Olson, D. L. 2013.Supply
chain outsourcing risk using integrated stochastic -
fuzzy optimization approach, Information Sciences,
vol. 235.
Yu, V. F., Chi, H. T. X, Shen, C. W. 2013.Ranking fuzzy
numbers based on epsilon-deviation degree, Applied
Soft Computing, vol. 13(8).
Zadeh, L. A. 1965. Fuzzy sets, Information Control, vol. 8.
Zadeh, L. A. 1975.The concept of a linguistic variable and
its application to approximate reasoning, part 1, 2 and
3, Information Sciences, vol. 8.
Zimmermann, H-J. 2000. An application – oriented view
of modelling uncertainty, European Journal of
Operational Research, vol. 122.