delaOssa, L., G
´
amez, J. A., and Puerta, J. M. (2005). Im-
proving model combination through local search in
parallel univariate edas. In Congress on Evolutionary
Computation, volume 2, pages 1426–1433. IEEE.
Fr
¨
uhwirth-Schnatter, S. (2006). Finite Mixture and Markov
Switching Models. Springer, New York.
Hauschild, M. and Pelikan, M. (2011). An introduction
and survey of estimation of distribution algorithms.
Swarm and Evolutionary Computation, 1(3):111 –
128.
Hyr
ˇ
s, M. and Schwarz, J. (2014). Multivariate gaussian
copula in estimation of distribution algorithm with
model migration. In 2014 IEEE Symposium on Foun-
dations of Computational Intelligence Proceedings,
pages 114–119, Piscataway. Institute of Electrical and
Electronics Engineers.
Jia, B., Wang, L., and Cui, Z. (2013). Copula for estima-
tion of distribution algorithm based on goodness-of-fit
test. In Journal of Theoretical and Applied Informa-
tion Technology, number 3, pages 1128–1132.
Larra
˜
naga, P. and Lozano, J. A. (2001). Estimation of Dis-
tribution Algorithms: A New Tool for Evolutionary
Computation. Kluwer Academic Publishers, Norwell,
MA, USA.
Mai, J. and Scherer, M. (2012). Simulating Copulas:
Stochastic Models, Sampling Algorithms, and Appli-
cations, volume 4 of Series in quantitative finance.
Imperial College Press.
Melchiori, M. R. (2006). Tools for sampling multivariate
archimedean copulas. YieldCurve, April.
M
´
endez, M. and Landa, R. (2012). An EDA based on
bayesian networks constructed with archimedean cop-
ulas. In 2012 Fourth World Congress on Nature
and Biologically Inspired Computing (NaBIC), pages
188–193.
Nelsen, R. B. (2006). An Introduction to Copulas. Springer
Series in Statistics. Springer New York.
Pelikan, M., Goldberg, D., and Cant
´
u-Paz, E. (1999). BOA:
The bayesian optimization algorithm. In Proceedings
of the Genetic and Evolutionary Computation Confer-
ence (GECCO-99), volume I, pages 525–532 also Il-
liGAL Report no. 99003.
Pelikan, M. and M
¨
uhlenbein, H. (1999a). The bivariate
marginal distribution algorithm. In Advances in Soft
Computing, pages 521–535. Springer London.
Pelikan, M. and M
¨
uhlenbein, H. (1999b). Marginal dis-
tributions in evolutionary algorithms. In In Proceed-
ings of the International Conference on Genetic Algo-
rithms Mendel 98, pages 90–95.
P
´
oczos, B., Ghahramani, Z., and Schneider, J. (2012).
Copula-based kernel dependency measures. In Lang-
ford, J. and Pineau, J., editors, Proceedings of the
29th International Conference on Machine Learning
(ICML-12), pages 775–782, New York, NY, USA.
ACM.
Rey, M. and Roth, V. (2012). Copula mixture model for
dependency-seeking clustering. In Langford, J. and
Pineau, J., editors, Proceedings of the 29th Interna-
tional Conference on Machine Learning (ICML-12),
pages 927–934, New York, NY, USA. ACM.
Salinas-Guti
´
errez, R., Hern
´
andez-Aguirre, A., and Villa-
Diharce, E. R. (2009). Using copulas in estimation of
distribution algorithms. In MICAI 2009: Advances in
Artificial Intelligence, volume 5845 of Lecture Notes
in Computer Science, pages 658–668. Springer Berlin
Heidelberg.
Salinas-Guti
´
errez, R., Hern
´
andez-Aguirre, A., and Villa-
Diharce, E. R. (2011). Estimation of distribution algo-
rithms based on copula functions. In Proceedings of
the 13th Annual Conference Companion on Genetic
and Evolutionary Computation, GECCO ’11, pages
795–798, New York, NY, USA. ACM.
Schwarz, J. and Jaro
ˇ
s, J. (2008). Parallel bivariate marginal
distribution algorithm with probability model migra-
tion. In Linkage in Evolutionary Computation, volume
157 of Studies in Computational Intelligence, pages
3–23. Springer Berlin Heidelberg.
Sklar, A. (1959). Fonctions de r
´
epartition
`
a n dimensions et
leurs marges. Publications de l’Institut de Statistique
de l’Universit
´
e de Paris, 8:229–231.
Soto, M., Gonz
´
alez-Fern
´
andez, Y., and Ochoa, A. (2012).
Modeling with copulas and vines in estimation of dis-
tribution algorithms. CoRR, abs/1210.5500.
Wang, L.-F., Guo, X., Zeng, J.-C., and Hong, Y. (2010a).
Using gumbel copula and empirical marginal distri-
bution in estimation of distribution algorithm. In
Advanced Computational Intelligence (IWACI), 2010
Third International Workshop on, pages 583–587.
IEEE.
Wang, L.-F., Zeng, J.-C., and Hong, Y. (2009). Estima-
tion of distribution algorithm based on copula theory.
In Evolutionary Computation, 2009. CEC ’09. IEEE
Congress on, pages 1057–1063.
Wang, L.-F., Zeng, J.-C., Hong, Y., and Guo, X. (2010b).
Copula estimation of distribution algorithm sampling
from clayton copula. Journal of Computational Infor-
mation Systems, 6(7):2431–2440.
Zhao, H. and Wang, L. (2012). Marginal distribution in
copula estimation of distribution algorithm based dy-
namic K-S test. In IJCSI International Journal of
Computer Science Issues, number 3, pages 507–514.
Zimmer, D. M. and Trivedi, P. K. (2006). Using trivari-
ate copulas to model sample selection and treatment
effects. Journal of Business & Economic Statistics,
24(1):63–76.
Elliptical and Archimedean Copulas in Estimation of Distribution Algorithm with Model Migration
219