Eberhart, R. & Kennedy, J., 1995. A New Optimizer
Using Particle Swarm Theory. In Proceeding of, 6th
International Symposium on Micro Machine and
Human Science, pp.530-535.
Fan, K., Yu, T. Lee, J., 2013, Linkage learning by number
of function evaluations estimation: practical view of
building blocks. In Information Sciences, Vol. 230,
Issue 1, pp. 162–182.
Goldberg, D.E., Deb, K., Kargupta H., Harik, G., 1993,
Rapid, accurate optimization of difficult problems
using fast messy genetic algorithms, In Proceedings of
5th International Conference on Genetic Algorithms.
Kennedy, J. & Eberhart, R., 1997, A Discrete Binary
Version of the Particle Swarm Algorithm. In IEEE
International Conference on Systems, Man and
Cybernetics, Computational Cybernetics and
Simulation, Vol.5, pp.4104-4108.
Kennedy, J., Mendes, R., 2006, Neighborhood Topologies
in Fully-InformedandBest-Of-Neighborhood
ParticleSwarms, In IEEE Transactions on
Systems,Man,and Cybernetics, PartC: Applications
and Reviews, Vol. 36, Issue 4, pp.515-519.
Khanesar, M. A, Teshnehlab, M. & Shoorehdeli, M.A.,
2007, A Novel Binary Particle Swarm Optimization,
In Proceedings of the 15th Mediterranean Conference
on Control&Automation, pp.1-6.
Kwasnicka, H., Przewozniczek, 2011, M., Multi
Population Pattern Searching Algorithm: a new
evolutionary method based on the idea of messy
Genetic Algorithm, In IEEE Transactions on
Evolutionary Computation, Vol. 15 Issue 5, pp.715-
734.
Laumanns, M., Ocenasek, J., 2002, Bayesian Optimization
Algorithms for multi-objective optimization, In
Lecture Notes in Computer Science , Vol. 2439, pp.
298-307.
Lim, W.H., Isa, N., 2014, Bidirectional teaching and peer-
learning particle swarm optimization, In Information
Sciences, Vol. 280, pp. 111-134.
Liu, Q., 2015, Order-2 Stability Analysis of Particle
Swarm Optimization, In Evolutionary Computation,
Vol. 23, No. 2, pp. 187–216.
Lovbjerg, M., Rasmussen, T. K., Krink, T., 2001, Hybrid
Particle Swarm Optimiser with Breeding and
Subpopulations, In Proceedings of the Genetic and
Evolutionary Computation Conference, Vol.24,
pp.469-476.
Moubayed, N., Petrovski, A., McCall, J., 2014,
D2MOPSO: MOPSO Based on Decomposition and
Dominance with Archiving Using Crowding Distance
in Objective and Solution Spaces, In Evolutionary
Computation, Vol. 22, No. 1, pp. 47–77.
Mu, A.Q., Cao, D.X., Wang, X.H., 2009, A Modified
Particle Swarm Optimization Algorithm, In Natural
Science, Vol.1, No. 2, pp. 151-155.
Niu, B., Zhu, Y., He, X., Wu, H., 2007, MCPSO: A multi-
swarm cooperative particle swarm optimizer, In
Applied Mathematics and Computation, Vol. 185, pp.
1050-1062.
Pelikan, M., Sastry, K., Butz, M.V., Goldberg, D.E., 2006,
Hierarchical BOA on Random Decomposable
Problems, In
MEDAL Report No. 2006001.
Przewozniczek, M., Goscien, R., Walkowiak, K.,
Klinkowski, M., 2015, Towards Solving Practical
Problems of Large Solution Space Using a Novel
Pattern Searching Hybrid Evolutionary Algorithm -
An Elastic Optical Network Optimization Case Study,
In Expert Systems with Applications, Vol. 42, pp.
7781-7796.
Rani K., Vikas K., 2014, Solving Travelling Salesman
Problem Using Genetic Algorithm Based On Heuristic
Crossover And Mutation Operator, In International
Journal of Research in Engineering & Technology,
Vol. 2, Issue 2, pp. 27-34.
Thierens, D., 1999, Scalability problems of simple genetic
algorithms, In Evolutionary Computation, Vol. 7,
Issue 4, pp. 331-352.
Walkowiak, K., Przewozniczek, M., Pajak, K., 2013,
Heuristic Algorithms for Survivable P2P Multicasting,
In Applied Artificial Intelligence, Vol. 27, Issue 4, pp.
278-303.
Watson, R.A., Hornby, G.S., Pollack, J.B., 1998,
Hierarchical Building-Block Problems for GA
Evaluation, In Parallel problem solving from nature ,
pp. 97-106.
Xu, L., Wang, J., Li, Y, Li, Q., Zhang, X., 2015, Resource
allocation algorithm based on hybrid particle swarm
optimization for multiuser cognitive OFDM network,
In Expert Systems with Applications, Vol. 42, Issue 20,
pp. 7186–7194.