REFERENCES
Salton, G., Wong, A., Yang, C. S. (1975). A vector space
model for automatic indexing. Communications of the
ACM, 18(11), 613-620.
Carpineto, C., Romano, G. (2012). A survey of automatic
query expansion in information retrieval. ACM
Computing Surveys (CSUR), 44(1), 1.
Stokoe, C., Oakes, M. P., Tait, J. (2003). Word sense
disambiguation in information retrieval revisited. In
Proceedings of the 26th annual international ACM
SIGIR conference on Research and development in
information retrieval (pp. 159-166). ACM.
Mangold, C. (2007). A survey and classification of
semantic search approaches. International Journal of
Metadata, Semantics and Ontologies, 2(1), 23-34.
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek,
D., Kalyanpur, A., Welty, C. et al. (2010). Building
Watson: An overview of the DeepQA project. AI
magazine, 31(3), 59-79.
Šveikauskienė, D., Telksnys, L. (2014). Accuracy of the
Parsing of Lithuanian Simple Sentences. Information
Technology and Control, 43(4), 402-413.
Kiryakov, A., Popov, B., Terziev, I., Manov, D.,
Ognyanoff, D. (2004). Semantic annotation, indexing,
and retrieval. Web Semantics: Science, Services and
Agents on the World Wide Web, 2(1), 49-79.
Castells, P., Fernandez, M., and Vallet, D. (2007). An
adaptation of the vector-space model for ontology-
based information retrieval. Knowledge and Data
Engineering, IEEE Transactions on, 19(2), 261-272.
Fernández, M., Cantador, I., López, V., Vallet, D.,
Castells, P., Motta, E. (2011). Semantically enhanced
Information Retrieval: an ontology-based approach.
Web Semantics: Science, Services and Agents on the
World Wide Web, 9(4), 434-452.
Lopez, V., Uren, V., Sabou, M. R., Motta, E. (2009).
Cross ontology query answering on the semantic web:
an initial evaluation. In Proceedings of the fifth
international conference on Knowledge capture (pp.
17-24). ACM.
Zinkevičius, V. (2000). Lemuoklis–morfologinei analizei.
Darbai ir dienos, 24, 245-274.
Šveikauskienė, D. (2005). Formal description of the
syntax of the Lithuanian language. Information
Technologies and Control, 34(3).
Kapociute-Dzikiene, J., Nivre, J., Krupavicius, A. (2013).
Lithuanian Dependency Parsing with Rich
Morphological Features. In Fourth Workshop on
Statistical Parsing of Morphologically Rich
Languages (p. 12).
Krilavičius, T., Medelis, Ž., Kapočiūtė-Dzikienė, J.,
Žalandauskas, T. (2012). News Media Analysis Using
Focused Crawl and Natural Language Processing:
Case of Lithuanian News Websites. In Information
and Software Technologies (pp. 48-61). Springer
Berlin Heidelberg.
Amardeilh, F. (2008). Semantic annotation and ontology
population. Semantic Web Engineering in the
Knowledge Society, 424-p.
Navigli, R., Ponzetto, S. P. (2012). BabelNet: The
automatic construction, evaluation and application of a
wide-coverage multilingual semantic network.
Artificial Intelligence, 193, 217-250.
OMG, 2008. Semantics of Business Vocabulary and
Business Rules (SBVR). Version 1.0. December,
2008, OMG Document Number: formal/2008-01-02.
Goedertier, S., Vanthienen, J. (2008). A Vocabulary and
Execution Model for Declarative Service
Orchestration. Business Process Management
Workshops, LNCS, Vol. 4928, 496–501.
Bodenstaff, L., Ceravolo, P., Ernesto Damiani, R.,
Fugazza, C., Reed, K., Wombacher, A. (2008).
Representing and Validating Digital Business
Processes. Web Information Systems and
Technologies, LNBIP, Vol. 8(1), 19–32.
Karpovič, J., Kriščiūnienė, G., Ablonskis, L., Nemuraitė,
L. (2014). The Comprehensive Mapping of Semantics
of Business Vocabulary and Business Rules (SBVR)
to OWL 2 Ontologies. Information Technology and
Control, 43(3), 289-302.
Sukys, A., Nemuraite, L., Paradauskas, B., Sinkevicius, E.
(2012). Transformation framework for SBVR based
semantic queries in business information systems. In
BUSTECH 2012, The Second International
Conference on Business Intelligence and Technology
(pp. 19-24).
Sukys, A., Nemuraite, L., Paradauskas, B. (2012).
Representing and transforming SBVR question
patterns into SPARQL. In Information and Software
Technologies (pp. 436-451).
Bernotaityte, G., Nemuraite, L., Butkiene, R.,
Paradauskas, B. (2013). Developing SBVR
vocabularies and business rules from OWL2
ontologies. In Information and Software Technologies
(pp. 134-145).
Shekarpour, S., Marx, E., Ngomo, A. C. N., & Auer, S.
(2015). Sina: Semantic interpretation of user queries
for question answering on interlinked data. Web
Semantics: Science, Services and Agents on the World
Wide Web, 30, 39-51.
Yao, X., Van Durme, B. (2014). Information extraction
over structured data: Question answering with
freebase. In Proceedings of ACL.