knowledge, is the first time a study distinguishes
between the macro view (all experimental scenarios
considered) and the micro view (considering a
specific clustering problem) and clearly differentiates
the corresponding results.
In the future, stability results in discrete clustering
should also be assessed and possible additional
experimental factors also considered (e.g., the
clusters’ entropy).
In the future, clustering stability results in real
data sets should also be assessed.
REFERENCES
Ben-David, S. & Luxburg, U. V., 2008. Relating clustering
stability to properties of cluster boundaries. In:
Servedio, R. & Zhang, T., eds. 21st Annual Conference
on Learning Theory (COLT), Berlin. Springer, 379-390.
Biernacki, C., Celeux, G., Govaert, G. & Langrognet, F.,
2006. Model-Based Cluster and Discriminant Analysis
with the MIXMOD Software. Computational Statistics
and Data Analysis, 51, 587-600.
Bubeck, S., Meila, M. & Von luxburg, U., 2012. How the
initialization affects the stability of the k-means
algorithm. ESAIM: Probability and Statistics, 16, 436-
452.
Cardoso, M. G., Faceli, K. & De Carvalho, A. C., 2010.
Evaluation of Clustering Results: The Trade-off Bias-
Variability. Classification as a Tool for Research.
Springer, 201-208.
Cardoso, M. G. M. S., 2007. Clustering and Cross-
Validation. In: C. Ferreira, C. L., G. Saporta And M.
Souto De Miranda, ed. IASC 07 - Statistics for Data
Mining, Learning and Knowledge Extraction, Aveiro,
Portugal.
Celeux, G. & Diebolt, J., 1985. The SEM Algorithm: A
probabilistic teacher algorithm derived from the EM
algorithm for the mixture problem. Computational
Statistics Quarterly, 2, 73-82.
Chiang, M. M.-T. & MIrkin, B., 2010. Intelligent Choice of
the Number of Clusters in K-Means Clustering: An
Experimental Study with Different Cluster Spreads.
Journal of Classification, 27, 3-40.
Dempster, A. P., Laird, N. M. & Rubin, D. B., 1977.
Maximum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistics Society. Series
B (Methodological), 39, 1-38.
Hartigan, J. A., 1975. Clustering algorithms.
Hennig, C., 2007. Cluster-wise assessment of cluster
stability. Computational Statistics & Data Analysis, 52,
258-271.
Horibe, Y., 1985. Entropy and correlation. Systems, Man
and Cybernetics, IEEE Transactions on, 5, 641-642.
Hubert, L. & Arabie, P., 1985. Comparing partitions.
Journal of Classification, 2, 193-218.
Jain, A. K. & Dubes, R. C., 1988. Algorithms for clustering
data, Englewood Cliffs, N.J.: Prentice Hall.
Kraskov, A., Stögbauer, H., Andrzejak, R. G. &
Grassberger, P., 2005. Hierarchical clustering using
mutual information. EPL (Europhysics Letters), 70,
278.
Lange, T., Roth, V., Braun, M. L. & Buchman, J. M., 2004.
Stability based validation of clustering solutions.
Neural Computation, 16, 1299-1323.
Lebret, R., S., L., Langrognet, F., Biernacki, C., Celeux, G.
& Govaert, G., 2012. Rmixmod: The r package of the
model-based unsupervised, supervised and semi-
supervised classification [Online]. Rmixmod library.
http://cran.rproject.org/web/packages/Rmixmod/index.
html
Luxburg, U. V., 2009. Clustering Stability: An Overview.
Machine Learning, 2, 235-274.
Maitra, R. & Melnykov, V., 2010. Simulating data to study
performance of finite mixture modeling and clustering
algorithms. Journal of Computational and Graphical
Statistics, 19, 354-376.
Mcintyre, R. M. & Blashfield, R. K., 1980. A nearest-
centroid technique for evaluating the minimum-
variance clustering procedure. Multivariate Behavioral
Research, 2, 225-238.
Milligan, G. W. & Cooper, M. C. 1985. An examination of
procedures for determining the number of clusters in a
data set. Psychometrika, 50, 159-179.
Rand, W. M., 1971. Objective criteria for the evaluation of
clustering methods. Journal of the American Statistical
Association, 66, 846-850.
Steinley, D. & Henson, R., 2005. OCLUS: an analytic
method for generating clusters with known overlap.
Journal of Classification, 22, 221-250.
Vendramin, L., Campello, R. J. & Hruschka, E. R., 2010.
Relative clustering validity criteria: A comparative
overview. Statistical Analysis and Data Mining, 3, 209-
235.
Vinh, N. X., Epps, J. & Bailey, J., 2010. Information
theoretic measures for clusterings comparison:
Variants, properties, normalization and correction for
chance. The Journal of Machine Learning Research,
11, 2837-2854.
Warrens, M. J., 2008. On similarity coefficients for 2× 2
tables and correction for chance. Psychometrika, 73,
487-502.