REFERENCES
Al-Madi, N. and Ludwig, S. A. (2013). Improving ge-
netic programming classification for binary and multi-
class datasets. In Hammer, B., Zhou, Z.-H., Wang, L.,
and Chawla, N., editors, IEEE Symposium on Compu-
tational Intelligence and Data Mining, CIDM 2013,
pages 166–173, Singapore.
Altman, N. S. (1992). An introduction to kernel and nearest-
neighbor nonparametric regression. The American
Statistician, 46(3):175–185.
Azad, R. M. A. and Ryan, C. (2014). The best things dont
always come in small packages: Constant creation
in grammatical evolution. In Genetic Programming,
pages 186–197. Springer.
Banzhaf, W. (2013). Evolutionary computation and ge-
netic programming. In Lakhtakia, A. and Martin-
Palma, R. J., editors, Engineered Biomimicry, chap-
ter 17, pages 429–447. Elsevier, Boston.
Barros, R. C., Basgalupp, M. P., De Carvalho, A. C., Fre-
itas, A., et al. (2012). A survey of evolutionary algo-
rithms for decision-tree induction. Systems, Man, and
Cybernetics, Part C: Applications and Reviews, IEEE
Transactions on, 42(3):291–312.
Belhassen, S. and Zaidi, H. (2010). A novel fuzzy c-means
algorithm for unsupervised heterogeneous tumor
quantification in pet. Medical physics, 37(3):1309–
1324.
Bhowan, U., Johnston, M., and Zhang, M. (2012). Develop-
ing new fitness functions in genetic programming for
classification with unbalanced data. IEEE Transac-
tions on Systems, Man, and Cybernetics, Part B: Cy-
bernetics, 42(2):406–421.
Boser, B. E., Guyon, I. M., and Vapnik, V. N. (1992). A
training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on Compu-
tational learning theory, pages 144–152. ACM.
Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A.
(1984). Classification and regression trees. CRC
press.
Castelli, M., Silva, S., Vanneschi, L., Cabral, A., Vascon-
celos, M. J., Catarino, L., and Carreiras, J. M. B.
(2013). Land cover/land use multiclass classifica-
tion using GP with geometric semantic operators. In
Esparcia-Alcazar, A. I., Cioppa, A. D., De Falco,
I., Tarantino, E., Cotta, C., Schaefer, R., Diwold,
K., Glette, K., Tettamanzi, A., Agapitos, A., Bur-
relli, P., Merelo, J. J., Cagnoni, S., Zhang, M.,
Urquhart, N., Sim, K., Ekart, A., Fernandez de Vega,
F., Silva, S., Haasdijk, E., Eiben, G., Simoes, A.,
and Rohlfshagen, P., editors, Applications of Evo-
lutionary Computing, EvoApplications 2013: Evo-
COMNET, EvoCOMPLEX, EvoENERGY, EvoFIN,
EvoGAMES, EvoIASP, EvoINDUSTRY, EvoNUM,
EvoPAR, EvoRISK, EvoROBOT, EvoSTOC, volume
7835 of LNCS, pages 334–343, Vienna. Springer Ver-
lag.
Cowgill, M. C., Harvey, R. J., and Watson, L. T. (1999). A
genetic algorithm approach to cluster analysis. Com-
puters & Mathematics with Applications, 37(7):99–
108.
Deodhar, S. and Motsinger-Reif, A. A. (2010). Grammat-
ical evolution decision trees for detecting gene-gene
interactions. In Pizzuti, C., Ritchie, M. D., and Gia-
cobini, M., editors, 8th European Conference on Evo-
lutionary Computation, Machine Learning and Data
Mining in Bioinformatics (EvoBIO 2010), volume
6023 of Lecture Notes in Computer Science, pages
98–109, Istanbul, Turkey. Springer.
Downey, C., Zhang, M., and Liu, J. (2012). Parallel lin-
ear genetic programming for multi-class classifica-
tion. Genetic Programming and Evolvable Machines,
13(3):275–304. Special issue on selected papers from
the 2011 European conference on genetic program-
ming.
Fitzgerald, J. and Ryan, C. (2013). A hybrid approach to
the problem of class imbalance. In Matousek, R., edi-
tor, 19th International Conference on Soft Computing,
MENDEL 2013, pages 129–137, Brno, Czech Repub-
lic.
Fitzgerald, J. and Ryan, C. (2014). Balancing exploration
and exploitation in genetic programming using inver-
sion with individualized self-adaptation. International
Journal of Hybrid Intelligent Systems, 11(4):273–285.
Fogel, D. B. (2000). What is evolutionary computation?
Spectrum, IEEE, 37(2):26–28.
Fu, W., Johnston, M., and Zhang, M. (2014). Unsupervised
learning for edge detection using genetic program-
ming. In Coello Coello, C. A., editor, Proceedings
of the 2014 IEEE Congress on Evolutionary Compu-
tation, pages 117–124, Beijing, China.
Greene, D., Tsymbal, A., Bolshakova, N., and Cunning-
ham, P. (2004). Ensemble clustering in medical diag-
nostics. In Computer-Based Medical Systems, 2004.
CBMS 2004. Proceedings. 17th IEEE Symposium on,
pages 576–581. IEEE.
Hruschka, E. R., Campello, R. J., Freitas, A., De Carvalho,
A. C., et al. (2009). A survey of evolutionary algo-
rithms for clustering. Systems, Man, and Cybernetics,
Part C: Applications and Reviews, IEEE Transactions
on, 39(2):133–155.
Kattan, A., Agapitos, A., and Poli, R. (2010). Unsuper-
vised problem decomposition using genetic program-
ming. In Esparcia-Alcazar, A. I., Ekart, A., Silva, S.,
Dignum, S., and Uyar, A. S., editors, Proceedings of
the 13th European Conference on Genetic Program-
ming, EuroGP 2010, volume 6021 of LNCS, pages
122–133, Istanbul. Springer.
Kattan, A., Fatima, S., and Arif, M. (2015). Time-
series event-based prediction: An unsupervised learn-
ing framework based on genetic programming. Infor-
mation Sciences, 301:99–123.
Keijzer, M. and Babovic, V. (2000). Genetic programming,
ensemble methods and the bias/variance tradeoff - in-
troductory investigations. In Poli, R., Banzhaf, W.,
Langdon, W. B., Miller, J. F., Nordin, P., and Fogarty,
T. C., editors, Genetic Programming, Proceedings of
EuroGP’2000, volume 1802 of LNCS, pages 76–90,
Edinburgh. Springer-Verlag.
Kim, Y., Street, W. N., and Menczer, F. (2000). Feature
selection in unsupervised learning via evolutionary
GEML: Evolutionary Unsupervised and Semi-Supervised Learning of Multi-class Classification with Grammatical Evolution
93