ometric semantic genetic operators. Expert Systems
with Applications, 41(10):4608–4616.
Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. Evolutionary Computation, IEEE Transac-
tions on, 6(2):182–197.
Dem
ˇ
sar, J. (2006). Statistical comparisons of classifiers
over multiple data sets. The Journal of Machine
Learning Research, 7:1–30.
Koza, J. R. (1990). Genetic programming: A paradigm
for genetically breeding populations of computer pro-
grams to solve problems. Technical report.
Krawiec, K. (2012). Medial crossovers for genetic program-
ming. In Moraglio, A., et al., editors, Proceedings of
the 15th European Conference on Genetic Program-
ming, EuroGP 2012, volume 7244 of LNCS, pages
61–72, Malaga, Spain. Springer Verlag.
Krawiec, K. and Lichocki, P. (2009). Approximating geo-
metric crossover in semantic space. In Raidl, G., et al.,
editors, GECCO ’09: Proceedings of the 11th Annual
conference on Genetic and evolutionary computation,
pages 987–994, Montreal. ACM.
Krawiec, K. and Liskowski, P. (2015). Automatic deriva-
tion of search objectives for test-based genetic pro-
gramming. In Genetic Programming, pages 53–65.
Springer.
Krawiec, K. and O’Reilly, U.-M. (2014). Behavioral pro-
gramming: a broader and more detailed take on se-
mantic gp. In Proceedings of the 2014 conference
on Genetic and evolutionary computation, pages 935–
942. ACM.
Langdon, W. B. (1995). Directed crossover within genetic
programming. Research Note RN/95/71, University
College London, Gower Street, London WC1E 6BT,
UK.
Langdon, W. B. (1999). Size fair and homologous tree
genetic programming crossovers. In Banzhaf, W., et
al., editors, Proceedings of the Genetic and Evolution-
ary Computation Conference, volume 2, pages 1092–
1097, Orlando, Florida, USA. Morgan Kaufmann.
Lehman, J. and Stanley, K. O. (2008). Exploiting open-
endedness to solve problems through the search for
novelty. In ALIFE, pages 329–336.
Lehman, J. and Stanley, K. O. (2010). Efficiently evolving
programs through the search for novelty. In Branke,
J., et al., editors, GECCO ’10: Proceedings of the
12th annual conference on Genetic and evolutionary
computation, pages 837–844, Portland, Oregon, USA.
ACM.
Majeed, H. and Ryan, C. (2006). Using context-aware
crossover to improve the performance of GP. In Kei-
jzer, M., et al., editors, GECCO 2006: Proceedings of
the 8th annual conference on Genetic and evolution-
ary computation, volume 1, pages 847–854, Seattle,
Washington, USA. ACM Press.
Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Ge-
ometric semantic genetic programming. In Coello
Coello, C. A., et al., editors, Parallel Problem Solv-
ing from Nature, PPSN XII (part 1), volume 7491
of Lecture Notes in Computer Science, pages 21–31,
Taormina, Italy. Springer.
Moraglio, A. and Poli, R. (2004). Topological interpre-
tation of crossover. In Deb, K., et al., editors, Ge-
netic and Evolutionary Computation – GECCO-2004,
Part I, volume 3102 of Lecture Notes in Computer Sci-
ence, pages 1377–1388, Seattle, WA, USA. Springer-
Verlag.
CEC Moraglio, A. and Poli, R. (2005). Geometric land-
scape of homologous crossover for syntactic trees. In
Proceedings of the 2005 IEEE Congress on Evolution-
ary Computation (CEC-2005), volume 1, pages 427–
434, Edinburgh. IEEE.
Moraglio, A., Poli, R., and Seehuus, R. (2006). Geomet-
ric crossover for biological sequences. In Collet, P., et
al., editors, Proceedings of the 9th European Confer-
ence on Genetic Programming, volume 3905 of Lec-
ture Notes in Computer Science, pages 121–132, Bu-
dapest, Hungary. Springer.
Naredo, E., Trujillo, L., and Martinez, Y. (2013). Searching
for novel classifiers. In Krawiec, K., et al., editors,
Proceedings of the 16th European Conference on Ge-
netic Programming, EuroGP 2013, volume 7831 of
LNCS, pages 145–156, Vienna, Austria. Springer Ver-
lag.
Nguyen, Q. U., Nguyen, X. H., and O’Neill, M. (2009). Se-
mantic aware crossover for genetic programming: The
case for real-valued function regression. In Vanneschi,
L., et al., editors, Proceedings of the 12th European
Conference on Genetic Programming, EuroGP 2009,
volume 5481 of LNCS, pages 292–302, Tuebingen.
Springer.
Pawlak, T. P., Wieloch, B., and Krawiec, K. (2014). Re-
view and comparative analysis of geometric semantic
crossovers. Genetic Programming and Evolvable Ma-
chines, pages 1–36.
Ruberto, S., Vanneschi, L., Castelli, M., and Silva, S.
(2014). ESAGP – A semantic GP framework based
on alignment in the error space. In Nicolau, M., et al.,
editors, 17th European Conference on Genetic Pro-
gramming, volume 8599 of LNCS, pages 150–161,
Granada, Spain. Springer.
Trujillo, L., Mu
˜
noz, L., Naredo, E., and Mart
´
ınez, Y.
(2014). Neat, theres no bloat. In Genetic Program-
ming, pages 174–185. Springer.
Trujillo, L., Naredo, E., and Martinez, Y. (2013). Pre-
liminary study of bloat in genetic programming with
behavior-based search. In Emmerich, M., et al., ed-
itors, EVOLVE - A Bridge between Probability, Set
Oriented Numerics, and Evolutionary Computation
IV, volume 227 of Advances in Intelligent Systems
and Computing, pages 293–305, Leiden, Holland.
Springer.
Uy, N. Q., Hoai, N. X., O’Neill, M., McKay, B., and
Galvan-Lopez, E. (2009). An analysis of semantic
aware crossover. In Cai, Z., et al., editors, Proceedings
of the International Symposium on Intelligent Com-
putation and Applications, volume 51 of Communi-
cations in Computer and Information Science, pages
56–65. Springer.
ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications
104