of the hardness of maize showed more accurate
results.
4 CONCLUSIONS
From the statistical models we found that irrigation,
using ATM, showed higher development for the
number of sheets. Was the possible reduction in the
volume of wastewater to achieve the same production
when subjected to the AC supply. Thus, the
technology enables increased food productivity, and
optimizing water resource without bringing any harm
to health or the environment.
The fuzzy model developed showed a better fit
when compared to the strength of the association
results of the statistical models of multiple
polynomial regression with the data collected in the
field, it has been observed that reducing the MSE and
the increase in value of re "d" of Wilmott .
So it turns out that the fuzzy modeling provides
less error adjustment curves, presenting as a behavior
analysis modeling of the variables tested
experimentally in the field of agricultural sciences.
Was the possible reduction in the volume of waste
water to achieve the same production when subjected
the irrigation with AC. Thus, this technology enables
increased productivity of food.
The method developed in this work is aimed at
preparing the system based on fuzzy rules, without
the presence of espcialista. Thus, such a method is
innovative in the area of experiments assessments.
REFERENCES
Aoda, M. I; Fattah, M. A. (2011). The Interactive Effects of
Water Magnetic Treatment and Deficit Irrigation on
Plant Productivity and Water Use Efficiency of Corn
(Zea Mays L.). The Iraqi Journal of Agricultural
Sciences, 42, 164-179.
Bogatin, J., Bondarenko, N. P., Gak, E. Z., Rokhinson, E.
E., & Ananyev, I. P. (1999). Magnetic treatment of
irrigation water: experimental results and application
conditions. Environmental science & technology,
33(8), 1280-1285.
Buckley, J. J. 2006. Fuzzy Probability and Statistics.
Studies in Fuzziness and Soft Computing. 1. ed. vol.196.
New York: Springer, 270 p.
Carozzi, M., Bregaglio, S., Scaglia, B., Bernardoni, E.,
Acutis, M., & Confalonieri, R. (2013). The
development of a methodology using fuzzy logic to
assess the performance of cropping systems based on a
case study of maize in the Po Valley. Soil Use and
Management, 29(4), 576-585.
Cremasco, C. P., Gabriel Filho, L. R. A., & Cataneo, A.
(2010). Metodologia de determinação de funções de
pertinência de controla-dores fuzzy para a avaliação
energética de empresas de avicultura de postura.
Energia na agricultura, 25(1), 21-39.
Figueiredo, C. C., Ramos, M. L. G., McManus, C. M., & de
Menezes, A. M. (2012). Mineralização de esterco de
ovinos e sua influência na produção de alface.
Horticultura Brasileira, 30(1), 175-179.
Gabriel Filho, L. R., Cremasco, C. P., Putti, F. F., & Chacur,
M. G. (2011). Application of fuzzy logic for the
evaluation of livestock slaughtering. Engenharia
Agrícola, 31(4), 813-825.
Gehr, R., Zhai, Z. A., Finch, J. A., & Rao, S. R. (1995).
Reduction of soluble mineral concentrations in CaSO 4
saturated water using a magnetic field. Water Research,
29(3), 933-940.
Hair, J. F. Anderson, R. E.; Black, W.C.; Tatham, R.L.
2005. Análise Multivariada de Dados. Porto Alegre:
Bookman, 5
th
. edition
Hasson, D., & Bramson, D. (1985). Effectiveness of
magnetic water treatment in suppressing calcium
carbonate scale deposition. Industrial & Engineering
Chemistry Process Design and Development, 24(3),
588-592.
Herzog, R. E., Shi, Q., Patil, J. N., & Katz, J. L. (1989).
Magnetic water treatment: the effect of iron on calcium
carbonate nucleation and growth. Langmuir, 5(3), 861-
867.
Hirata, A. C. S., Hirata, E. K., Guimarães, E. C., Rós, A. B.,
& Monquero, P. A. (2014). Plantio direto de alface
americana sobre plantas de cobertura dessecadas ou
roçadas. Bragantia, 73(2), 178-183.
Hozayn, M., & Qados, A. M. S. A. (2010). Irrigation with
magnetized water enhances growth, chemical
constituent and yield of chickpea (Cicer arietinum L.).
Agriculture and Biology Journal of North America,
1(4), 671-676.
Joshi, K. M., & Kamat, P. V. (1966). Effect of magnetic
field on the physical properties of water. J. Ind. Chem.
Soc, 43, 620-622.
Katsuki, A., Tokunaga, R., Watanabe, S. I., & Tanimoto, Y.
(1996). The Effect of High Magnetic Field on the
Crystal Growth of Benzophenone. Chemistry Letters,
(8), 607-608.
Khoshravesh, M., MostafazadehFard, B., Mousavi, S. F.,
& Kiani, A. R. (2011). Effects of magnetized water on
the distribution pattern of soil water with respect to time
in trickle irrigation. Soil Use and Management, 27(4),
515-522.
Kronenberg, K. J. (1985). Experimental evidence for
effects of magnetic fields on moving water. Magnetics,
IEEE Transactions on, 21(5), 2059-2061.
Lopes, G. N., Kroetz, V. J., Alves, J. M. A., & Smiderle, O.
J. (2010). Irrigação Magnética. Revista Agro@ mbiente
On-line, 1(1), 1-8.
Maheshwari, B. L., & Grewal, H. S. (2009). Magnetic
treatment of irrigation water: Its effects on vegetable
crop yield and water productivity. Agricultural water
management, 96(8), 1229-1236.