REFERENCES
Aizawa, A. N. and Wah, B. W. (1994). Scheduling of ge-
netic algorithms in a noisy environment. Evolutionary
Computation, 2(2):97–122.
Arnold, D. (2001). Evolution strategies in noisy
environments-a survey of existing work. In Theoret-
ical aspects of evolutionary computing, pages 239–
250. Springer-Verlag.
Bhattacharya, M., Islam, R., and Mahmood, A. (2014). Un-
certainty and evolutionary optimization: A novel ap-
proach. In Industrial Electronics and Applications
(ICIEA), 2014 IEEE 9th Conference on, pages 988–
993.
Castillo, P. A., Gonz
´
alez, J., Merelo-Guerv
´
os, J.-J., Prieto,
A., Rivas, V., and Romero, G. (1999). G-Prop-III:
Global optimization of multilayer perceptrons using
an evolutionary algorithm. In GECCO-99: Proceed-
ings Of The Genetic And Evolutionary Computation
Conference, page 942.
Cauwet, M.-L., Liu, J., Teytaud, O., et al. (2014). Al-
gorithm portfolios for noisy optimization: Compare
solvers early. In Learning and Intelligent Optimiza-
tion Conference.
Chiaberge, M., Merelo, J. J., Reyneri, L. M., Prieto, A., and
Zocca, L. (1994). A comparison of neural networks,
linear controllers, genetic algorithms and simulated
annealing for real time control. In Proceedings of the
European Symposium on Artificial Neural Networks.
Index available from http://www.dice.ucl.ac.be/esann/
proceedings/esann1994/content.htm, pages 205–210.
D facto (Brussels). Available from http://polimage.
polito.it/ marcello/articoli/esann.94.jj.pdf and a
scanned version from http://www.dice.ucl.ac.be/
Proceedings/esann/esannpdf/es1994-533-S.pdf.
Costa, A., Vargas, P., and Tin
´
os, R. (2013). Using explicit
averaging fitness for studying the behaviour of rats in
a maze. In Advances in Artificial Life, ECAL, vol-
ume 12, pages 940–946.
Fern
´
andez-Ares, A., Garc
´
ıa-S
´
anchez, P., Mora, A. M.,
Castillo, P. A., and Guerv
´
os, J. J. M. (2014a). De-
signing competitive bots for a real time strategy
game using genetic programming. In Camacho, D.,
G
´
omez-Mart
´
ın, M. A., and Gonz
´
alez-Calero, P. A.,
editors, Proceedings 1st Congreso de la Sociedad
Espa
˜
nola para las Ciencias del Videojuego, CoSE-
Civi 2014, Barcelona, Spain, June 24, 2014., volume
1196 of CEUR Workshop Proceedings, pages 159–
172. CEUR-WS.org.
Fern
´
andez-Ares, A., Mora, A. M., Arenas, M. G., Guerv
´
os,
J. J. M., Garc
´
ıa-S
´
anchez, P., and Valdivieso, P.
A. C. (2014b). Co-evolutionary optimization of au-
tonomous agents in a real-time strategy game. In
Esparcia-Alc
´
azar, A. I. and Mora, A. M., editors, Ap-
plications of Evolutionary Computation - 17th Eu-
ropean Conference, EvoApplications 2014, Granada,
Spain, April 23-25, 2014, Revised Selected Papers,
volume 8602 of Lecture Notes in Computer Science,
pages 374–385. Springer.
Fern
´
andez-Ares, A., Mora, A. M., Guerv
´
os, J. J. M.,
Garc
´
ıa-S
´
anchez, P., and Fernandes, C. (2011). Op-
timizing player behavior in a real-time strategy game
using evolutionary algorithms. In IEEE Congress on
Evolutionary Computation, pages 2017–2024. IEEE.
Friedrich, T., K
¨
otzing, T., Krejca, M., and Sutton, A. M.
(2015). The Benefit of Sex in Noisy Evolutionary
Search. ArXiv e-prints.
Garc
´
ıa-Ortega, R. H., Garc
´
ıa-S
´
anchez, P., Mora, A. M., and
Merelo, J. (2014). My life as a sim: evolving unique
and engaging life stories using virtual worlds. In AL-
IFE 14: The Fourteenth Conference on the Synthesis
and Simulation of Living Systems, volume 14, pages
580–587.
Garc
´
ıa-S
´
anchez, P., Fern
´
andez-Ares, A., Mora, A. M., Val-
divieso, P. A. C., Gonz
´
alez, J., and Guerv
´
os, J. J. M.
(2014). Tree depth influence in genetic programming
for generation of competitive agents for RTS games.
In Esparcia-Alc
´
azar, A. I. and Mora, A. M., editors,
Applications of Evolutionary Computation - 17th Eu-
ropean Conference, EvoApplications 2014, Granada,
Spain, April 23-25, 2014, Revised Selected Papers,
volume 8602 of Lecture Notes in Computer Science,
pages 411–421. Springer.
Hansen, N., Finck, S., Ros, R., and Auger, A. (2009).
Real-parameter black-box optimization benchmark-
ing 2009: Noisy functions definitions.
Jin, Y. and Branke, J. (2005). Evolutionary optimization
in uncertain environments - a survey. IEEE Trans-
actions on Evolutionary Computation, 9(3):303–317.
cited By (since 1996)576.
Jun-hua, L. and Ming, L. (2013). An analysis on con-
vergence and convergence rate estimate of elitist ge-
netic algorithms in noisy environments. Optik - In-
ternational Journal for Light and Electron Optics,
124(24):6780 – 6785.
Liberatore, F., Mora, A., Castillo, P., and Merelo, J. (2015).
Comparing heterogeneous and homogeneous flocking
strategies for the ghost team in the game of ms. pac-
man. Computational Intelligence and AI in Games,
IEEE Transactions on, PP(99):1–1.
Liu, J., St-Pierre, D. L., and Teytaud, O. (2014). A math-
ematically derived number of resamplings for noisy
optimization. In Proceedings of the 2014 Conference
Companion on Genetic and Evolutionary Computa-
tion Companion, GECCO Comp ’14, pages 61–62,
New York, NY, USA. ACM.
Lucas, S. M. (2007). Ms pac-man competition. ACM
SIGEVOlution, 2(4):37–38.
Merelo, J. J., Castillo, P. A., Mora, A., Fern
´
andez-Ares,
A., Esparcia-Alc
´
azar, A. I., Cotta, C., and Rico, N.
(2014). Studying and tackling noisy fitness in evo-
lutionary design of game characters. In Rosa, A.,
Merelo, J. J., and Filipe, J., editors, ECTA 2014 - Pro-
ceedings of the International Conference on Evolu-
tionary Computation Theory and Applications, pages
76–85.
Merelo-Guerv
´
os, J.-J., Prieto, A., and Mor
´
an, F.
(2001). Optimization of classifiers using ge-
netic algorithms, chapter 4, pages 91–108. MIT
press. ISBN: 0262162016; draft available from
http://geneura.ugr.es/pub/papers/g-lvq-book.ps.gz.
Miller, B. L. and Goldberg, D. E. (1996). Genetic algo-
rithms, selection schemes, and the varying effects of
noise. Evolutionary Computation, 4(2):113–131.
There is Noisy Lunch: A Study of Noise in Evolutionary Optimization Problems
267