Asgharian, H. and Hansson, B. (2005). Evaluating the im-
portance of missing risk factors using the optimal or-
thogonal portfolio approach. Journal of Empirical Fi-
nance, 12(4):556–575.
Assaad, M., Bon´e, R., and Cardot, H. (2008). A new
boosting algorithm for improved time-series forecast-
ing with recurrent neural networks. Information Fu-
sion, 9(1):41–55.
Caporin, M., Ranaldo, A., and De Magistris, P. S. (2013).
On the predictability of stock prices: A case for
high and low prices. Journal of Banking & Finance,
37(12):5132–5146.
Chen, C.-W. (2014). Retracted: Applications of neural-
network-based fuzzy logic control to a nonlinear time-
delay chaotic system. Journal of Vibration and Con-
trol, 20(4):589–605.
Collins, M. (2007). Ensembles and probabilities: a new
era in the prediction of climate change. Philosophical
Transactions of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 365(1857):1957–
1970.
Corwin, S. A. and Schultz, P. (2012). A simple way to esti-
mate bid-ask spreads from daily high and low prices.
The Journal of Finance, 67(2):719–760.
Farmer, J. D. and Sidorowich, J. J. (1987). Predicting
chaotic time series. Physical review letters, 59(8):845.
Felder, M., Kaifel, A., and Graves, A. (2010). Wind power
prediction using mixture density recurrent neural net-
works. In Poster Presentation gehalten auf der Euro-
pean Wind Energy Conference.
Fonseca, R. and G´omez-Gil, P. (2014). Temporal validated
meta-learning for long-term forecasting of chaotic
time series using monte carlo cross-validation. In Re-
cent Advances on Hybrid Approaches for Designing
Intelligent Systems, pages 353–367. Springer.
Gers, F. (2001). Long Short-Term Memory in Recurrent
Neural Networks. PhD thesis, ECOLE POLYTECH-
NIQUE FEDERALE DE LAUSANNE.
Gers, F. A., Schmidhuber, J., and Cummins, F. (2000).
Learning to forget: Continual prediction with lstm.
Neural computation, 12(10):2451–2471.
Goudreau, M., Giles, C., Chakradhar, S., and Chen, D.
(1994). First-order vs. second-order single layer re-
current neural networks. IEEE Trans. on Neural Net-
works, 5(3):511.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Maknickas, A. and Maknickiene, N. (2012). Influence of
data orthogonality: on the accuracy and stability of
financial market predictions. In IJCCI 2012, pages
616–619. INSTICC.
Maknickien˙e, N. and Maknickas, A. (2013). Financial mar-
ket prediction system with evolino neural network and
delphi method. Journal of Business Economics and
Management, 14(2):403–413.
Markowitz, H. (1952). Portfolio selection*. The journal of
finance, 7(1):77–91.
Markowitz, H. (1987). Mean-variance analysis in portfolio
choice and capital markets. Blackwell.
Markowitz, H. (2014). Mean–variance approximations to
expected utility. European Journal of Operational Re-
search, 234(2):346–355.
Mayer, H., Gomez, F., Wierstra, D., Nagy, I., Knoll, A., and
Schmidhuber, J. (2008). A system for robotic heart
surgery that learns to tie knots using recurrent neural
networks. Advanced Robotics, 22(13-14):1521–1537.
McLean Sloughter, J., Gneiting, T., and Raftery, A. E.
(2013). Probabilistic wind vector forecasting using
ensembles and bayesian model averaging. Monthly
Weather Review, 141(6):2107–2119.
Roll, R. (1980). Orthogonal portfolios. Journal of Financial
and Quantitative analysis, 15(05):1005–1023.
Rutkauskas, A. V. (2000). Formation of adequate invest-
ment portfolio for stochasticity of profit possibilities.
Property management, 4(2):100–115.
Rutkauskas, A. V. and Stankeviˇciene, J. (2003). Formation
of an investment portfolio adequate for stochasticity
of profit possibilities. Journal of Business Economics
and Management, 4(1):3–12.
Samanta, B. (2011). Prediction of chaotic time series us-
ing computational intelligence. Expert Systems with
Applications, 38(9):11406–11411.
Scharnhorst, A. and Ebeling, W. (2005). Evolutionary
search agents in complex landscapes-a new model
for the role of competence and meta-competence
(evolino and other simulation tools). arXiv preprint
physics/0511232.
Schmidhuber, J., Gagliolo, M., Wierstra, D., and Gomez,
F. (2005a). Evolino for recurrent support vector ma-
chines. arXiv preprint cs/0512062.
Schmidhuber, J., Wierstra, D., Gagliolo, M., and Gomez, F.
(2007). Training recurrent networks by evolino. Neu-
ral computation, 19(3):757–779.
Schmidhuber, J., Wierstra, D., and Gomez, F. (2005b).
Evolino: Hybrid neuroevolution/optimal linear search
for sequence prediction. In In Proceedings of the
19th International Joint Conference on Artificial In-
telligence IJCAI. Citeseer.
Sheng, C., Zhao, J., Wang, W., and Leung, H. (2013).
Prediction intervals for a noisy nonlinear time series
based on a bootstrapping reservoir computing network
ensemble. Neural Networks and Learning Systems,
IEEE Transactions on, 24(7):1036–1048.
Stankeviˇciene, J., Maknickiene, N., and Maknickas, A.
(2014). Investigation of exchange market prediction
model based on high-low daily data. In The 8th inter-
national scientific conference ”Business and Manage-
ment 2014”. Vilnius.Technika.
Tsai, C.-F. and Wu, J.-W. (2008). Using neural network en-
sembles for bankruptcy prediction and credit scoring.
Expert Systems with Applications, 34(4):2639–2649.
Wierstra, D., Gomez, F. J., and Schmidhuber, J. (2005).
Modeling systems with internal state using evolino.
In Proceedings of the 7th annual conference on Ge-
netic and evolutionary computation, pages 1795–
1802. ACM.
Zhang, G. P., Berardi, V., et al. (2001). Time series forecast-
ing with neural network ensembles: an application for
exchange rate prediction. Journal of the Operational
Research Society, 52(6):652–664.