Many-Valued Logic through Its History

Angel Garrido

2015

Abstract

Our purpose is to contribute here to the searching for the origins of many-valued logics and, within them, as a special case that of “Fuzzy Logic”, also called by different manners, as Diffuse Logic, either Heuristic Logic, or `logique floue´ (in French), etc. It is also our goal to relate how was welcome to many-valued logics in our Iberian Peninsula, which is just another province of the world philosophical universe.

References

  1. Ackermann, R., 1967, An Introduction to Many-Valued Logics. London, Routledge and Kegan Paul.
  2. Belnap, N.D., 1977, “How a computer should think”, in G. Ryle (ed.), Contemporary Aspects of Philosophy, Stockfield: Oriel Press, pp. 30-56.
  3. Bochvar, D.A., 1938, “Ob odnom trechznacnom iscislenii i ego primenenii k analizu paradoksov klassiceskogo rassirennogo funkcional'nogo iscislenija”, Matematiceskij Sbornik, 4 (46): 287-308. [English translation: Bochvar, D.A., “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic, 2, pp. 87- 112.]
  4. Bolc, L., and Borowik, P., 1992, Many-Valued Logics 1: Theoretical Foundations. Springer Verlag, Berlin, New York.
  5. Ibid., 2003, Many-Valued Logics 2: Applications. Springer Verlag, Berlin, New York.
  6. Chang, C.C., 1958, “Algebraic analysis of many valued logics”, Transactions American Mathematical Society, 88, pp. 476-490.
  7. Ibid., 1959, “A new proof of the completeness of the Lukasiewicz axioms”, Transactions American Mathema-tical Society, 93, pp. 74-80.
  8. Cignoli, R., Esteva, F., Godo, L. and Torrens, A., 2000, “Basic Fuzzy Logic is the logic of continuous t-norms and their residua”, Soft Computing, 4, pp. 106-112.
  9. Cignoli, R., d'Ottaviano, I. and Mundici, D., 2000, Algebraic Foundations of Many-Valued Reasoning, Dordrecht, Kluwer Acad. Publ.
  10. Cintula, P. and Hájek, P., 2010, “Triangular norm based predicate fuzzy logics”, Fuzzy Sets and Systems, 161 (3), pp. 311-346.
  11. Cintula, P., Hájek, P. and Noguera Ch. (eds.), 2011, Handbook of Mathematical Fuzzy Logic (Studies in Logic, Volumes 37-38), College Publications, London.
  12. Deaño, A., 2004, Introducción a la Lógica Formal. Alianza Universidad, Madrid.
  13. Domínguez Prieto, P., 1995, Indeterminación y Verdad. La polivalencia lógica en la Escuela de LvovVarsovia. Nossa y Jara Editores, Móstoles.
  14. Dubois, D., Prade, H., 1980, Fuzzy sets and systemsTheory and applications. Academic Press, New York.
  15. Ibid., 2000, Fundamentals of Fuzzy Sets. With a Foreword by Lofti Asker Zadeh. Kluwer Academic Publishers, Basel, Springer-Verlag, New York.
  16. Esteva, F. and Godo, L., 2001, “Monoidal t-norm based logic: towards a logic for left-continuous t-norms”, Fuzzy Sets and Systems, 124, pp. 271-288.
  17. Ibid., and Montagna, F., 2004, “Equational characterization of the subvarieties of BL generated by t-norm algebras”, Studia Logica, 76, pp. 161-200.
  18. Fitting, M. and Orlowska, E. (eds.), 2003, Beyond Two, Heidelberg, Physica Verlag.
  19. García Bacca, J. D., 1936, Introducción a la Lógica Moderna. Ediciones Labor, Madrid.
  20. Garrido, A., 2006, “Special functions in Fuzzy Analysis”. Opuscula Mathematica, vol. 26(3), pp. 457-464. AGH University of Science and Technology, Krakow.
  21. Ibid., 2011, “Searching the arcane origins of Fuzzy Logic”. BRAIN (Broad Research in Artificial Intelligence and Neuroscience), vol. 2(2), pp. 51-57.
  22. Ibid., 2013, Filosofía y Matemáticas de la Vaguedad y de la Incertidumbre, PhD. Thesis in Mathematical Logic, qualified with Summa Cum Laude. Extraordinary Doctorate Award. Madrid, UNED, 2013.
  23. Ibid., 2014, Lógicas de nuestro tiempo. Madrid, Editorial Dykinson.
  24. Ibid., 2014, Lógica Aplicada. Vaguedad e Incertidumbre. Madrid, Editorial Dykinson.
  25. Ibid, 2015, Lógica Matemática e Inteligencia Artificial. Madrid, Editorial Dykinson.
  26. Giles, R., 1974, “A non-classical logic for physics”, Studia Logica, 33, pp. 397-415.
  27. Ibid., 1975. “Lukasiewicz logic and fuzzy set theory”. In: Proceedings 1975 Internat. Symposium MultipleValued Logic (Indiana Univ., Bloomington/IN)}, Long Beach/CA: IEEE Computer Soc., pp. 197-211.
  28. Ibid., 1976, “Lukasiewicz logic and fuzzy set theory”. Internat. Journal on Man-Machine Studies, 8, pp. 313- 327.
  29. Ibid., 1979, “A formal system for fuzzy reasoning”. Fuzzy Sets and Systems, 2, pp. 233-257.
  30. Ibid., 1988, “The concept of grade of membership”. Fuzzy Sets and Systems, 25, pp. 297-323.
  31. Gödel, K., 1932, “Zum intuitionistischen Aussagenkalkül”, Anzeiger Akademie der Wissenschaften Wien (Math.-naturwiss. Klasse), 69: 65-66; - reprinted: (1933), Ergebnisse eines mathematischen Kolloquiums, 4, pp. 40 ss.
  32. Goguen, J. A., 1969, “The logic of inexact concepts”. Synthese 19(3/4), pp. 325-373.
  33. Gottwald, S., 1999, “Many-valued logic and fuzzy set theory”, in U. Höhle, S.E. Rodabaugh (eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory (The Handbooks of Fuzzy Sets Series), Boston, KluwerAcad. Press, pp. 5-89.
  34. Ibid., 2001, A Treatise on Many-Valued Logics (Studies in Logic and Computation, vol. 9), Baldock, Research Studies Press Ltd.
  35. Ibid., 2007, “Many-valued logics”, in D. Jacquette (as ed.) Philosophy of Logic (Handbook of the Philosophy of Science Series), Amsterdam, North-Holland, pp. 675- 722.
  36. Ibid., 2008, “Mathematical fuzzy logics”, Bulletin Symbolic Logic, 14, pp. 210-239.
  37. Hähnle, R., 1993, Automated Deduction in MultipleValued Logics, Oxford : Clarendon Press.
  38. Ibid., 1999, “Tableaux for many-valued logics”, in M. d'Agostino et al. (eds.) Handbook of Tableau Methods, Dordrecht, Kluwer, pp. 529-580.
  39. Ibid., 2001, “Advanced many-valued logics”, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic (Volume 2), 2nd ed., Dordrecht, Kluwer, pp. 297-395.
  40. Hájek, P. and Zach, R., 1994, “Review of Many-Valued Logics 1: Theoretical Foundations, by Leonard Bolc and Piotr Borowik”, Journal of Applied Non-Classical Logics, 4 (2), pp. 215-220.
  41. Hájek, P., 1998, Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Boston-Dordrecht.
  42. Ibid. 2005, “Making fuzzy description logic more general”, Fuzzy Sets and Systems, 154, pp. 1-15.
  43. Jaskowski, S., 1936, “Recherches sur le système de la logique intuitioniste”, in Actes du Congrès Internationale de Philosophie Scientifique 1936, vol. 6, Paris, pp. 58-61. [English translation: Studia Logica, 34 (1975), pp. 117-120.]
  44. Kleene, S.C., 1938, “On notation for ordinal numbers”, Journal of Symbolic Logic, 3, pp. 150-155.
  45. Ibid., 1952, Introduction to Metamathematics. Amsterdam, North-Holland Publ. Co., and New York, Van Nostrand, 1952.
  46. Kripke, S.A., 1975, “Outline of a theory of truth”, Journal of Philosophy, 72, pp. 690-716.
  47. Lukasiewicz, J., 1963, Elements of Mathematical Logic. Panstwowe Wydawnictwo Naukowe, Warsaw.
  48. Ibid., 1970, Selected Works. L. Borkowski, as editor. Amsterdam, North Holland C. Publ. Co.
  49. Ibid., 2013, Écrits logiques et philo-sophiques. Librairie Philosophique Jacques Vrin, Paris.
  50. Malinowski, G., 2007, “Many-valued Logic and Its Philosophies”, in Handbook of History of Logic, ed. by D. M. Gabbay and J. Woods. Vol. 8, pp. 13-94. Elsevier-North Holland Publ. Co., Amsterdam.
  51. Marcus, S., 2006, “Grigore C. Moisil: A life becoming a myth”, IJCCC (International Journal of Computers, Communications & Control), vol. 1, no. 1, pp. 73-79.
  52. Ibid., 2015, Order vs What? Presentation to ICTAMI 2015, September 2015. “1 Decembrie 1918” Universitatea din Alba Iulia, Transilvania.
  53. Metcalfe, G., Olivetti, N. and Gabbay, D., 2009, Proof Theory for Fuzzy Logics, New York, Berlin, Springer Verlag.
  54. Mira, J., et al., 1995, Aspectos Básicos de Inteligencia Artificial. UNED.
  55. Moisil, G., 1965, Încercari vechi ?i noi în logica neclasica. Bucuresti.
  56. Ibid., 1968, Elemente de logica matematica ?i teoria mul?imilor, Bucuresti.
  57. Montagna, F. (ed.), 2015, Petr Hájek on Mathematical Fuzzy Logic (Outstanding Contributions to Logic, vol. 6), Cham etc., Springer Verlag, Berlin-New York.
  58. Mosterín, J., 2007, Los lógicos. Austral. Editorial EspasaCalpe, Madrid.
  59. Murawski, R., 2007, The Philosophy of Mathematics and Logic in the 1920s and 1930s in Poland. Birkhäuser Verlag, Basel, Switzerland.
  60. Ibid., 2010, Essays in the Philosophy and History of Logic and Mathematics. Poznan Studies in the Philosophy of the Sciences & the Humanities. Rodopi Verlag.
  61. Novák, V., Perfilieva, I. and Mockor, J., 1999, Mathematical Principles of Fuzzy Logic, Boston, Kluwer Acad. Press.
  62. Novák, V., 2008, “A formal theory of intermediate quantifiers”, Fuzzy Sets and Systems, 159, pp. 1229- 1246.
  63. Patterson, D., 2008, New Essays on Tarski and Philosophy. Oxford University Press, OUP.
  64. Pawlak, Z., and Skowron, A., 2007, “Rudiments of Rough Sets”. Information Sciences, Elsevier, 177, pp. 3-27.
  65. Post, E. L., 1920, “Determination of all closed systems of truth tables”, Bulletin American Mathematical Society, 26, pp. 437 ss.
  66. Ibid., 1921, “Introduction to a general theory of elementary propositions”, American Journal Mathematics, 43, pp. 163-185.
  67. Rasiowa, H. and Sikorski, R., 1963, The Mathematics of Metamathematics. Warszawa.
  68. Rescher, N., 1969, Many-Valued Logic, New York, McGraw Hill Publ. Co.
  69. Rosser, J.B. and Turquette, A.R., 1952, Many-Valued Logics, Amsterdam, North-Holland Publ. Co.
  70. Sacristán, M., 1990, Introducción a la Lógica y al Análisis Formal. Colección Circulo Universidad, Círculo de Lectores, Barcelona.
  71. Scarpellini, B., 1962, “Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Lukasiewicz”, Journal of Symbolic Logic, 27, pp. 159-170.
  72. Skolem, Thoralf, 1957, Bemerkungen zum Komprehensionsaxiom, Zeitschrift mathematische Logik Grundlagen Mathematik, 3, pp. 1-17.
  73. Stegmüller, W., 2013, Das Wahrheitsproblem und die Idee der Semantik: Eine Einführung in die Theorien von A. Tarski und R. Carnap. Springer Verlag.
  74. Tarski, A., 2013, Introduction to Logic: and to the Methodology of Deductive Sciences (Dover Books on Mathematics).
  75. Ibid., 1977, Einführung in die mathematische Logik (Raabe, Samtliche Werke). Vandenhoeck und Ruprecht.
  76. Ibid., 1983, Logic, Semantics, Metamathematics: Papers from 1923-38. Hackett Publishing Co, Inc; Edición: 2nd Rev. ed. John Corcoran as editor.
  77. Ibid., with Mostowski, A., and Robinson, R. M., 2010, Undecidable Theories: Studies in Logic and the Foundation of Mathematics (Dover Books on Mathematics).
  78. Trillas, E., Alsina, C., and Terricabras, J. M., 1995, Introducción a la Lógica Borrosa. Ediciones Ariel, Barcelona, 1995.
  79. Wojcicki, R. and Malinowski, G. (eds.), 1977, Selected Papers on Lukasiewicz Sentential Calculi, Wroclaw, Ossolineum Verlag.
  80. Wolenski, J., 1989, Logic and Philosophy in the LvovWarsaw School. Kluwer Academic Publishers, Dordrecht.
  81. Ibid., 2013, Historico-Philosophical Essays, vol. I. Copernicus Cen-ter, Krakow.
  82. Wybraniec-Skardowska, U., 2009, POLISH LOGIC. Some lines from a personal perspective.
  83. Yager, R. R., 1987, Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh. Yager et al. (eds.), John Wiley, New York.
  84. Zadeh, L. A., 1965, “Fuzzy Sets”, Information and Control, 8, pp. 338-55.
  85. Ibid., 1975, “Fuzzy Logic and approximate reasoning”. Synthese, 30, pp. 407-428.
  86. Ibid., 1987, Fuzzy Sets and Applications. Selected Papers. R. R. Yager et al. as editors. New York, Wiley.
  87. Zinovev, A.A., 1963, Philosophical Problems of ManyValued Logic, Dordrecht: Reidel Verlag.
Download


Paper Citation


in Harvard Style

Garrido A. (2015). Many-Valued Logic through Its History . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 170-175. DOI: 10.5220/0005604901700175


in Bibtex Style

@conference{fcta15,
author={Angel Garrido},
title={Many-Valued Logic through Its History},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015)},
year={2015},
pages={170-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005604901700175},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015)
TI - Many-Valued Logic through Its History
SN - 978-989-758-157-1
AU - Garrido A.
PY - 2015
SP - 170
EP - 175
DO - 10.5220/0005604901700175