Many-Valued Logic through Its History
Angel Garrido
2015
Abstract
Our purpose is to contribute here to the searching for the origins of many-valued logics and, within them, as a special case that of “Fuzzy Logic”, also called by different manners, as Diffuse Logic, either Heuristic Logic, or `logique floue´ (in French), etc. It is also our goal to relate how was welcome to many-valued logics in our Iberian Peninsula, which is just another province of the world philosophical universe.
References
- Ackermann, R., 1967, An Introduction to Many-Valued Logics. London, Routledge and Kegan Paul.
- Belnap, N.D., 1977, “How a computer should think”, in G. Ryle (ed.), Contemporary Aspects of Philosophy, Stockfield: Oriel Press, pp. 30-56.
- Bochvar, D.A., 1938, “Ob odnom trechznacnom iscislenii i ego primenenii k analizu paradoksov klassiceskogo rassirennogo funkcional'nogo iscislenija”, Matematiceskij Sbornik, 4 (46): 287-308. [English translation: Bochvar, D.A., “On a three-valued logical calculus and its application to the analysis of the paradoxes of the classical extended functional calculus”, History and Philosophy of Logic, 2, pp. 87- 112.]
- Bolc, L., and Borowik, P., 1992, Many-Valued Logics 1: Theoretical Foundations. Springer Verlag, Berlin, New York.
- Ibid., 2003, Many-Valued Logics 2: Applications. Springer Verlag, Berlin, New York.
- Chang, C.C., 1958, “Algebraic analysis of many valued logics”, Transactions American Mathematical Society, 88, pp. 476-490.
- Ibid., 1959, “A new proof of the completeness of the Lukasiewicz axioms”, Transactions American Mathema-tical Society, 93, pp. 74-80.
- Cignoli, R., Esteva, F., Godo, L. and Torrens, A., 2000, “Basic Fuzzy Logic is the logic of continuous t-norms and their residua”, Soft Computing, 4, pp. 106-112.
- Cignoli, R., d'Ottaviano, I. and Mundici, D., 2000, Algebraic Foundations of Many-Valued Reasoning, Dordrecht, Kluwer Acad. Publ.
- Cintula, P. and Hájek, P., 2010, “Triangular norm based predicate fuzzy logics”, Fuzzy Sets and Systems, 161 (3), pp. 311-346.
- Cintula, P., Hájek, P. and Noguera Ch. (eds.), 2011, Handbook of Mathematical Fuzzy Logic (Studies in Logic, Volumes 37-38), College Publications, London.
- Deaño, A., 2004, Introducción a la Lógica Formal. Alianza Universidad, Madrid.
- Domínguez Prieto, P., 1995, Indeterminación y Verdad. La polivalencia lógica en la Escuela de LvovVarsovia. Nossa y Jara Editores, Móstoles.
- Dubois, D., Prade, H., 1980, Fuzzy sets and systemsTheory and applications. Academic Press, New York.
- Ibid., 2000, Fundamentals of Fuzzy Sets. With a Foreword by Lofti Asker Zadeh. Kluwer Academic Publishers, Basel, Springer-Verlag, New York.
- Esteva, F. and Godo, L., 2001, “Monoidal t-norm based logic: towards a logic for left-continuous t-norms”, Fuzzy Sets and Systems, 124, pp. 271-288.
- Ibid., and Montagna, F., 2004, “Equational characterization of the subvarieties of BL generated by t-norm algebras”, Studia Logica, 76, pp. 161-200.
- Fitting, M. and Orlowska, E. (eds.), 2003, Beyond Two, Heidelberg, Physica Verlag.
- García Bacca, J. D., 1936, Introducción a la Lógica Moderna. Ediciones Labor, Madrid.
- Garrido, A., 2006, “Special functions in Fuzzy Analysis”. Opuscula Mathematica, vol. 26(3), pp. 457-464. AGH University of Science and Technology, Krakow.
- Ibid., 2011, “Searching the arcane origins of Fuzzy Logic”. BRAIN (Broad Research in Artificial Intelligence and Neuroscience), vol. 2(2), pp. 51-57.
- Ibid., 2013, Filosofía y Matemáticas de la Vaguedad y de la Incertidumbre, PhD. Thesis in Mathematical Logic, qualified with Summa Cum Laude. Extraordinary Doctorate Award. Madrid, UNED, 2013.
- Ibid., 2014, Lógicas de nuestro tiempo. Madrid, Editorial Dykinson.
- Ibid., 2014, Lógica Aplicada. Vaguedad e Incertidumbre. Madrid, Editorial Dykinson.
- Ibid, 2015, Lógica Matemática e Inteligencia Artificial. Madrid, Editorial Dykinson.
- Giles, R., 1974, “A non-classical logic for physics”, Studia Logica, 33, pp. 397-415.
- Ibid., 1975. “Lukasiewicz logic and fuzzy set theory”. In: Proceedings 1975 Internat. Symposium MultipleValued Logic (Indiana Univ., Bloomington/IN)}, Long Beach/CA: IEEE Computer Soc., pp. 197-211.
- Ibid., 1976, “Lukasiewicz logic and fuzzy set theory”. Internat. Journal on Man-Machine Studies, 8, pp. 313- 327.
- Ibid., 1979, “A formal system for fuzzy reasoning”. Fuzzy Sets and Systems, 2, pp. 233-257.
- Ibid., 1988, “The concept of grade of membership”. Fuzzy Sets and Systems, 25, pp. 297-323.
- Gödel, K., 1932, “Zum intuitionistischen Aussagenkalkül”, Anzeiger Akademie der Wissenschaften Wien (Math.-naturwiss. Klasse), 69: 65-66; - reprinted: (1933), Ergebnisse eines mathematischen Kolloquiums, 4, pp. 40 ss.
- Goguen, J. A., 1969, “The logic of inexact concepts”. Synthese 19(3/4), pp. 325-373.
- Gottwald, S., 1999, “Many-valued logic and fuzzy set theory”, in U. Höhle, S.E. Rodabaugh (eds.), Mathematics of Fuzzy Sets: Logic, Topology, and Measure Theory (The Handbooks of Fuzzy Sets Series), Boston, KluwerAcad. Press, pp. 5-89.
- Ibid., 2001, A Treatise on Many-Valued Logics (Studies in Logic and Computation, vol. 9), Baldock, Research Studies Press Ltd.
- Ibid., 2007, “Many-valued logics”, in D. Jacquette (as ed.) Philosophy of Logic (Handbook of the Philosophy of Science Series), Amsterdam, North-Holland, pp. 675- 722.
- Ibid., 2008, “Mathematical fuzzy logics”, Bulletin Symbolic Logic, 14, pp. 210-239.
- Hähnle, R., 1993, Automated Deduction in MultipleValued Logics, Oxford : Clarendon Press.
- Ibid., 1999, “Tableaux for many-valued logics”, in M. d'Agostino et al. (eds.) Handbook of Tableau Methods, Dordrecht, Kluwer, pp. 529-580.
- Ibid., 2001, “Advanced many-valued logics”, in D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic (Volume 2), 2nd ed., Dordrecht, Kluwer, pp. 297-395.
- Hájek, P. and Zach, R., 1994, “Review of Many-Valued Logics 1: Theoretical Foundations, by Leonard Bolc and Piotr Borowik”, Journal of Applied Non-Classical Logics, 4 (2), pp. 215-220.
- Hájek, P., 1998, Metamathematics of Fuzzy Logic. Kluwer Academic Publishers, Boston-Dordrecht.
- Ibid. 2005, “Making fuzzy description logic more general”, Fuzzy Sets and Systems, 154, pp. 1-15.
- Jaskowski, S., 1936, “Recherches sur le système de la logique intuitioniste”, in Actes du Congrès Internationale de Philosophie Scientifique 1936, vol. 6, Paris, pp. 58-61. [English translation: Studia Logica, 34 (1975), pp. 117-120.]
- Kleene, S.C., 1938, “On notation for ordinal numbers”, Journal of Symbolic Logic, 3, pp. 150-155.
- Ibid., 1952, Introduction to Metamathematics. Amsterdam, North-Holland Publ. Co., and New York, Van Nostrand, 1952.
- Kripke, S.A., 1975, “Outline of a theory of truth”, Journal of Philosophy, 72, pp. 690-716.
- Lukasiewicz, J., 1963, Elements of Mathematical Logic. Panstwowe Wydawnictwo Naukowe, Warsaw.
- Ibid., 1970, Selected Works. L. Borkowski, as editor. Amsterdam, North Holland C. Publ. Co.
- Ibid., 2013, Écrits logiques et philo-sophiques. Librairie Philosophique Jacques Vrin, Paris.
- Malinowski, G., 2007, “Many-valued Logic and Its Philosophies”, in Handbook of History of Logic, ed. by D. M. Gabbay and J. Woods. Vol. 8, pp. 13-94. Elsevier-North Holland Publ. Co., Amsterdam.
- Marcus, S., 2006, “Grigore C. Moisil: A life becoming a myth”, IJCCC (International Journal of Computers, Communications & Control), vol. 1, no. 1, pp. 73-79.
- Ibid., 2015, Order vs What? Presentation to ICTAMI 2015, September 2015. “1 Decembrie 1918” Universitatea din Alba Iulia, Transilvania.
- Metcalfe, G., Olivetti, N. and Gabbay, D., 2009, Proof Theory for Fuzzy Logics, New York, Berlin, Springer Verlag.
- Mira, J., et al., 1995, Aspectos Básicos de Inteligencia Artificial. UNED.
- Moisil, G., 1965, Încercari vechi ?i noi în logica neclasica. Bucuresti.
- Ibid., 1968, Elemente de logica matematica ?i teoria mul?imilor, Bucuresti.
- Montagna, F. (ed.), 2015, Petr Hájek on Mathematical Fuzzy Logic (Outstanding Contributions to Logic, vol. 6), Cham etc., Springer Verlag, Berlin-New York.
- Mosterín, J., 2007, Los lógicos. Austral. Editorial EspasaCalpe, Madrid.
- Murawski, R., 2007, The Philosophy of Mathematics and Logic in the 1920s and 1930s in Poland. Birkhäuser Verlag, Basel, Switzerland.
- Ibid., 2010, Essays in the Philosophy and History of Logic and Mathematics. Poznan Studies in the Philosophy of the Sciences & the Humanities. Rodopi Verlag.
- Novák, V., Perfilieva, I. and Mockor, J., 1999, Mathematical Principles of Fuzzy Logic, Boston, Kluwer Acad. Press.
- Novák, V., 2008, “A formal theory of intermediate quantifiers”, Fuzzy Sets and Systems, 159, pp. 1229- 1246.
- Patterson, D., 2008, New Essays on Tarski and Philosophy. Oxford University Press, OUP.
- Pawlak, Z., and Skowron, A., 2007, “Rudiments of Rough Sets”. Information Sciences, Elsevier, 177, pp. 3-27.
- Post, E. L., 1920, “Determination of all closed systems of truth tables”, Bulletin American Mathematical Society, 26, pp. 437 ss.
- Ibid., 1921, “Introduction to a general theory of elementary propositions”, American Journal Mathematics, 43, pp. 163-185.
- Rasiowa, H. and Sikorski, R., 1963, The Mathematics of Metamathematics. Warszawa.
- Rescher, N., 1969, Many-Valued Logic, New York, McGraw Hill Publ. Co.
- Rosser, J.B. and Turquette, A.R., 1952, Many-Valued Logics, Amsterdam, North-Holland Publ. Co.
- Sacristán, M., 1990, Introducción a la Lógica y al Análisis Formal. Colección Circulo Universidad, Círculo de Lectores, Barcelona.
- Scarpellini, B., 1962, “Die Nichtaxiomatisierbarkeit des unendlichwertigen Prädikatenkalküls von Lukasiewicz”, Journal of Symbolic Logic, 27, pp. 159-170.
- Skolem, Thoralf, 1957, Bemerkungen zum Komprehensionsaxiom, Zeitschrift mathematische Logik Grundlagen Mathematik, 3, pp. 1-17.
- Stegmüller, W., 2013, Das Wahrheitsproblem und die Idee der Semantik: Eine Einführung in die Theorien von A. Tarski und R. Carnap. Springer Verlag.
- Tarski, A., 2013, Introduction to Logic: and to the Methodology of Deductive Sciences (Dover Books on Mathematics).
- Ibid., 1977, Einführung in die mathematische Logik (Raabe, Samtliche Werke). Vandenhoeck und Ruprecht.
- Ibid., 1983, Logic, Semantics, Metamathematics: Papers from 1923-38. Hackett Publishing Co, Inc; Edición: 2nd Rev. ed. John Corcoran as editor.
- Ibid., with Mostowski, A., and Robinson, R. M., 2010, Undecidable Theories: Studies in Logic and the Foundation of Mathematics (Dover Books on Mathematics).
- Trillas, E., Alsina, C., and Terricabras, J. M., 1995, Introducción a la Lógica Borrosa. Ediciones Ariel, Barcelona, 1995.
- Wojcicki, R. and Malinowski, G. (eds.), 1977, Selected Papers on Lukasiewicz Sentential Calculi, Wroclaw, Ossolineum Verlag.
- Wolenski, J., 1989, Logic and Philosophy in the LvovWarsaw School. Kluwer Academic Publishers, Dordrecht.
- Ibid., 2013, Historico-Philosophical Essays, vol. I. Copernicus Cen-ter, Krakow.
- Wybraniec-Skardowska, U., 2009, POLISH LOGIC. Some lines from a personal perspective.
- Yager, R. R., 1987, Fuzzy Sets and Applications: Selected Papers by L. A. Zadeh. Yager et al. (eds.), John Wiley, New York.
- Zadeh, L. A., 1965, “Fuzzy Sets”, Information and Control, 8, pp. 338-55.
- Ibid., 1975, “Fuzzy Logic and approximate reasoning”. Synthese, 30, pp. 407-428.
- Ibid., 1987, Fuzzy Sets and Applications. Selected Papers. R. R. Yager et al. as editors. New York, Wiley.
- Zinovev, A.A., 1963, Philosophical Problems of ManyValued Logic, Dordrecht: Reidel Verlag.
Paper Citation
in Harvard Style
Garrido A. (2015). Many-Valued Logic through Its History . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 170-175. DOI: 10.5220/0005604901700175
in Bibtex Style
@conference{fcta15,
author={Angel Garrido},
title={Many-Valued Logic through Its History},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015)},
year={2015},
pages={170-175},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005604901700175},
isbn={978-989-758-157-1},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 2: FCTA, (ECTA 2015)
TI - Many-Valued Logic through Its History
SN - 978-989-758-157-1
AU - Garrido A.
PY - 2015
SP - 170
EP - 175
DO - 10.5220/0005604901700175