Application of an Automatic Data Alignment & Structuring System for Intercultural Consumer Segmentation Analysis

Fumiko Kano Glückstad

2015

Abstract

This position paper introduces a conceptual framework of our ambitious international research project where the aim is extraction and alignment of heterogeneous consumer segment structures across a multiplicity of markets and cultures. We argue that an automatic data alignment and structuring system employing a non-parametric Bayesian relational modelling is an ideal approach that can address challenges in the conventional cross-cultural data analysis. The paper presents an example of our preliminary work that applies this approach to the analysis of opinion survey responses given by male populations in Sweden and Japan. The framework successfully extracts groups of males who express similar but also dissimilar response patterns from the two selected countries. Based on these preliminary studies, the paper discusses potential contributions and future challenges of the international consumer analysis project.

References

  1. Aldous, D. 1985. Exchangeability and Related Topics. in ÓCole D'éTé De ProbabilitéS Desaint-Flour XIII1983, 1-198
  2. Berlin, J. & Motro, a. 2002. Database Schema Matching using Machine Learning with Feature Selection. in Proceedings of the 14th International Conference on Advanced Information Systems Engineering, Vol. 2348 of Lecture Notes in Computer Science, 452-466
  3. Cheng, C.P., Lau, G.T., Law, K.H., Pan, J. & Jones, a. 2008. Regulation Retrieval using Industry Specific Taxonomies. in Artif Intell Law 16, Springer. 277- 303.
  4. Cleveland, M., Erdogan, S., Arikan, G., Poyraz, T. 2011a. Cosmopolitanism, Individual-Level Values and Cultural-Level Values: A Cross-Cultural Study. in Journal of Business Research 64, 934-943.
  5. Cleveland, M., Papadopoulos, N., Laroche, M. 2011b. Identity, Demographics, and Consumer Behaviors: International Market Segmentation across Product Categories, in Intl. Marketing Review, 28(3), 244-266
  6. Cross, V., Yu, X. and Hu, X. 2013. Unifying Ontological Similarity Measures: a Theoretical and Empirical Investigation. in International Journal of Approximate Reasoning, Vol.54, 861-875.
  7. Doan, A.H., Madhavan, J., Domingos, P. & Halevy, a. 2004. Ontology Matching: a Machine Learning Approach. in: Staab S, Studer R (Eds) Handbook on Ontologies, Chapter 18. Springer, Berlin, 385-404
  8. Euzenat, J. 1994. Brief Overview of T-Tree: the Tropes Taxonomy Building Tool. in Proceeding of the 4th ASIS SIG/CR Workshop on Classification Research, 69-87
  9. Euzenat, J. & Shvaiko, P. 2007. Ontology Matching. Springer, Berlin.
  10. Faust, K. & Wasserman, S. 1992. Blockmodels: Interpretation and Evaluation. in Social Networks, 14 (1-2), 5-61
  11. Fensel D., Davies, J., Bussler, C. and Studer R. (Eds.) 2004. the Semantic Web: Research and Applications. in First European Semantic Web Symposium, Heraklion, Crete, Greece, Springer-Verlag, Berlin.
  12. Fischer, R. Schwartz, S.H. 2011. Whence Differences in Value Priorities? Individual, Cultural, or Artifactual Sources. in Journal of Cross-Cultural Psychology, Vol 42, 1127-1144
  13. Glückstad, F.K., Herlau, T., Schmidt, N. M., & Mørup, M. 2014. Cross-Categorization of Legal Concepts across Boundaries of Legal Systems: in Consideration of Inferential Links. in Artif Intell Law 22 (1), Springer, 61-108.
  14. Isaac, A., Meij, L.V.D., Schlobach, S. & Wang, S. 2007. an Empirical Study of Instance-based System Matching. in the Semantic Web, Lecture Notes in Computer Science, Vol.4825, 253-266.
  15. Kemp, C., Tenenbaum, J.B., Griffiths, T.L. Yamada, T. & Ueda, N. 2006. Learning Systems of Concepts with an Infinite Relational Model. in Proc. the 21st National AAAI Conference on 1:381-388.
  16. Mørup, M., Glückstad, F.K., Herlau, T. & Schmidt, N. M. 2014. Non Parametric Statistical Structuring of Knowledge Systems using Binary Feature Matches. in Proceedings of 2014 IEEE International Workshop on Machine Learning for Signal Processing
  17. Mørup, M. & Schmidt, M.N. 2012. Bayesian Community Detection. in Neural Computation 24 (9), 2434-2456.
  18. Mørup, M., Madsen, K.H., Dogonowski, a.M., Siebner, H. & Hansen, L.K. 2010. Infinite Relational Modeling of Functional Connectivity in Resting State Fmri. in Neural Information Processing Systems, 1750-1758.
  19. Ngo, D., Bellahsene, Z. & Todorov, K. 2013. Extended Tversky Similarity for Resolving Terminological Heterogeneities across Ontologies. in OTM 2013, Lecture Notes in Computer Science, Vol.8185, 711- 718.
  20. Pirrò, G. and Seco, N. 2008. Design, Implementation and Evaluation of a New Semantic Similarity Metric Combining Features and Intrinsic Information Content. in OTM Conferences (2), 1271-1288.
  21. Pirrò, G. & Euzenat, J. 2010. a Feature and Information Theoretic Framework for Semantic Similarity and Relatedness. in International Semantic Web Conference (1), 615-630.
  22. Pitman J. 2002. Combinatorial Stochastic Processes. in Tech. Rep., Springer.
  23. Schmidt, M.N., Herlau, T. & Mørup, M. 2012. Nonparametric Bayesian Models of Hierarchical Structure in Complex Networks. in Informatics and Mathematical Modelling.
  24. Schmidt, M.N. & Mørup, M. 2013. Non-Parametric Bayesian Modeling of Complex Networks. an Introduction. in IEEE Signal Processing Magazine, Vol. 30(3), 110-128
  25. Schwartz, S. H. 2012. an Overview of the Schwartz Theory of Basic Values. in Online Readings in Psychology and Culture, 2(1).
  26. Stumme, G. & Mädche, a. 2001. Fca-Merge: Bottom-up Merging of Ontologies. in Proceedings of 17th International Joint Conference on Artificial Intelligence (IJAI), 225-234
  27. Wang, J., Wen, J.R., Lochovsky, F. & Ma, W.Y. 2004. Instance-based Schema Matching for Web Databases by Domain-Specific Query Probing. in Proc. of the 30th Intl. Conference on Very Large Data Bases, 408- 419
  28. Wasserman, S. & Anderson, C. 1987. Stochastic a Posteriori Blockmodels: Construction and Assessment. in Sociological Networks, 9, 1-36.
  29. WVS: World Value Survey Association 2009. World Value Survey Official Data File V. 20090901. Aggregate File Producer: ASEP/JDS, Madrid
  30. Xu, Z., Tresp, V., Yu, K., & Kriegel, H.P. 2006. Learning Infinite Hidden Relational Models. in Uncertainty in Artificial Intelligence (UAI2006)
Download


Paper Citation


in Harvard Style

Kano Glückstad F. (2015). Application of an Automatic Data Alignment & Structuring System for Intercultural Consumer Segmentation Analysis . In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2015) ISBN 978-989-758-158-8, pages 251-256. DOI: 10.5220/0005605602510256


in Bibtex Style

@conference{keod15,
author={Fumiko Kano Glückstad},
title={Application of an Automatic Data Alignment & Structuring System for Intercultural Consumer Segmentation Analysis},
booktitle={Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2015)},
year={2015},
pages={251-256},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005605602510256},
isbn={978-989-758-158-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, (IC3K 2015)
TI - Application of an Automatic Data Alignment & Structuring System for Intercultural Consumer Segmentation Analysis
SN - 978-989-758-158-8
AU - Kano Glückstad F.
PY - 2015
SP - 251
EP - 256
DO - 10.5220/0005605602510256