Control of Three-Phase Grid-Connected Microgrids using Artificial Neural Networks

Shuhui Li, Xingang Fu, Ishan Jaithwa, Eduardo Alonso, Michael Fairbank, Donald C. Wunsch

2015

Abstract

A microgrid consists of a variety of inverter-interfaced distributed energy resources (DERs). A key issue is how to control DERs within the microgrid and how to connect them to or disconnect them from the microgrid quickly. This paper presents a strategy for controlling inverter-interfaced DERs within a microgrid using an artificial neural network, which implements a dynamic programming algorithm and is trained with a new Levenberg-Marquardt backpropagation algorithm. Compared to conventional control methods, our neural network controller exhibits fast response time, low overshoot, and, in general, the best performance. In particular, the neural network controller can quickly connect or disconnect inverter-interfaced DERs without the need for a synchronization controller, efficiently track fast-changing reference commands, tolerate system disturbances, and satisfy control requirements at grid-connected mode, islanding mode, and their transition.

References

  1. S. N. Balakrishnan and V. Biega, Adaptive-critic-based neural networks for aircraft optimal control, J. Guidance, Control, and Dynamics, 19: 4, pp. 893-898, 1996.
  2. R. E. Bellman, Dynamic Programming. Princeton, NJ: Princeton Univ. Press, 1957.
  3. F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, Overview of control and grid synchronization for distributed power generation systems, IEEE Trans. Ind. Electron., 53: 5, pp. 1398-1409, 2006.
  4. N. Bottrell, M. Prodanovic, and T. C. Green, Dynamic stability of a microgrid with an active load, IEEE Trans. Power Electron., 28: 11, pp. 5107-5119, 2013.
  5. S.-K. Chung, A phase tracking system for three phase utility interface inverters, IEEE Trans. Power Electron., 15: 3, pp. 431-438, 2000.
  6. G. F. Franklin, J. D. Powell, M. L. Workman, Digital Control of Dynamic Systems, Addison-Wesley, 1998.
  7. R. Gagnon, Detailed Model of a Doubly-Fed Induction Generator (DFIG) Driven by a Wind Turbine,The MathWork, 2009.
  8. M. T. Hagan, H. B. Demuth, and M. H. Beale, Neural Network Design, Boston: PWS, 2002.
  9. H. He, N. Zhen, and F. Jian, A three-network architecture for on-line learning and optimization based on adaptive dynamic programming, Neurocomputing, 78: 1, pp. 3-13, 2012.
  10. F. Katiraei, R. Iravani, N. Hatziargyriou, and A. Dimeas, Microgrid management, IEEE Power and Energy Magazine, 6: 3, 2008, pp. 54-65.
  11. C. Lee, C. Chu, and P. Cheng, A new droop control method for the autonomous operation of distributed energy resource interface converters, IEEE Trans. Power Electron., 28: 4, pp. 1980-1993, 2013.
  12. S. Li, M. Fairbank, C. Johnson, D. C. Wunsch and E. Alonso, Artificial neural networks for control of a grid-connected rectifier/inverter under disturbance, dynamic and power converter switching conditions, IEEE Trans. on NeuralNet. and Learning Systems, 25: 4, pp. 738-750, 2014.
  13. S. Li, T.A. Haskew, Y. Hong, and L. Xu, Direct-current vector control of three-phase grid-connected rectifier-inverter, Electric Power System Research, 81: 2, 2011, pp. 357-366.
  14. N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., John Wiley & Sons Inc., 2002.
  15. S. Papathanassiou, N. Hatziargyriou, and K. Strunz, A benchmark low voltage microgrid network, Proc. of CIGRE Symposium: Power Systems with Dispersed Generation, April 2005, Athens, Greece.
  16. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical recipes in C: The art of scientific computing (second edition), Cambridge University Press, 1992, pp. 994.
  17. J. Rocabert, G. M. S. Azevedo, A. Luna, J. M. Guerrero, J. I. Candela, and P. Rodríguez, Intelligent connection agent for three-phase grid-connected microgrids, IEEE Trans. on Power Electronics, 26: 10, 2011, pp. 2993-3005.
  18. P. Rodríguez, A. Luna, R. S. Muñoz-Aguilar, I. Etxeberria-Otadui, R. Teodorescu, and F. Blaabjerg, A stationary reference frame grid synchronization system for three-phase grid-connected power converters under adverse grid conditions, IEEE Trans. Power Electron., 27: 1, pp. 99-112, 2012.
  19. C. N. Rowe, T. J. Summers, R. E. Betz, D. J. Cornforth, and T. G. Moore, Arctan power-frequency droop for improved microgrid stability, IEEE Trans. Power Electron., 28: 8, pp. 3747-3759, 2013.
  20. F. Y. Wang, H. Zhang, and D. Liu, Adaptive dynamic programming: An introduction, IEEE Comput. Intell. Mag., pp. 39-47, 2009.
  21. a) Solar inverter d- and q-axis currents 10 2 4 6 8 10 Time (sec)
  22. b) Wind turbine inverter d- and q-axis currents 12 2 4 6 8 Time (sec)
  23. c) Battery inverter d- and q-axis currents 10 12 4 6 8 Time (sec)
  24. d) Microgrid frequency 10 12 2 4 6 8 10 Time (sec)
  25. e) Active and reactive power absorbed from the grid 12 2 4 6 8 10 Time (sec)
  26. f) Active and reactive power of the microturbine 12 8.3 8.35 8 8.05 8.1 8.15 8.2 Time (sec)
  27. j) Three-phase load current at Bus 8 8.25 8.3 8.35
Download


Paper Citation


in Harvard Style

Li S., Fu X., Jaithwa I., Alonso E., Fairbank M. and C. Wunsch D. (2015). Control of Three-Phase Grid-Connected Microgrids using Artificial Neural Networks . In Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015) ISBN 978-989-758-157-1, pages 58-69. DOI: 10.5220/0005607900580069


in Bibtex Style

@conference{ncta15,
author={Shuhui Li and Xingang Fu and Ishan Jaithwa and Eduardo Alonso and Michael Fairbank and Donald C. Wunsch},
title={Control of Three-Phase Grid-Connected Microgrids using Artificial Neural Networks},
booktitle={Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015)},
year={2015},
pages={58-69},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005607900580069},
isbn={978-989-758-157-1},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Computational Intelligence - Volume 3: NCTA, (ECTA 2015)
TI - Control of Three-Phase Grid-Connected Microgrids using Artificial Neural Networks
SN - 978-989-758-157-1
AU - Li S.
AU - Fu X.
AU - Jaithwa I.
AU - Alonso E.
AU - Fairbank M.
AU - C. Wunsch D.
PY - 2015
SP - 58
EP - 69
DO - 10.5220/0005607900580069