

Knowledge-based Engineering of Automation Systems using
Ontologies and Engineering Data

Matthias Glawe1, Christopher Tebbe2, Alexander Fay1 and Karl-Heinz Niemann2
1Institute of Automation Technology, Helmut Schmidt University / University of the Federal Armed Forces,

Holstenhofweg 85, 22043 Hamburg, Germany
2Faculty I – Electrical Engineering and Information Technology, University of Applied Sciences and Arts Hannover,

Ricklinger Stadtweg 120, 30459 Hannover, Germany

Keywords: Ontology, Knowledge-based Engineering, Semantic Web, CAEX, IT Security.

Abstract: Ontologies provide an effective way for describing and using knowledge of a specific domain. In
engineering workflows the reusability and quick adoption of knowledge is needed for solving several tasks
in efficient ways. Engineering data is mostly structured in hierarchical documents and exchange formats,
but is not represented in ontologies. Therefore a connection between engineering data and the knowledge in
ontologies is needed. In this article we present a bridge concept for connecting engineering data with an
OWL-based ontology. For this we use an example ontology containing security knowledge of automation
systems.

1 INTRODUCTION

The engineering of an automation system for a
production plant or a building requires significant
effort and a dedicated workflow, organised in
subsequent phases (Vogel-Heuser et al., 2014).
Within this engineering workflow, some tasks
require creativity, whereas other phases are
characterised to be repetitive and tedious tasks,
which makes the use of software tools advisable
(Frank et al., 2012). Especially for the repetitive
tasks, the use of knowledge-based support tools has
proven to be advantageous in terms of effort savings,
time savings, and quality assurance (Strube et al.,
2011, Runde and Fay, 2011, Legat et al., 2013). If
the engineering expert’s knowledge can be
formulated in IF-THEN statements, these rules can
be applied on the engineering data of the current
engineering project. These form the facts1 of the
current problem, from the perspective of the
knowledge-based systems (Russell and Norvig,
2010; Fulcher and Jain, 2008).

In the engineering workflow, rule-based systems
can not only support the creation of engineering

1”The term facts mean information that is considered reliable.

Expert systems draw inferences using facts.” (Giarratano 2005,
p. 72).

results (e.g. Schmidberger and Fay, 2007; Güttel et
al., 2008) but also the analysis of engineering results
regarding e.g. completeness, reliability (e.g.
Christiansen, 2011) and safety (e.g. Schreiber,
2007). Recently, the analysis of the automation
system’s design regarding IT security threats has
become more important due to increased
vulnerability of commercial-of-the-shelf components
and standard communication technologies in
automation systems. Therefore, IT security analyses,
denoted as security analyses in the following, of the
automation system have to be conducted. These
analyses should take place during the design of the
automation system as well as along its operation
(IEC 62443-2-1). Security analyses might be highly
complex and time consuming, as many details
regarding the automation system and the
implementation environment have to be considered.
Likewise, they require a significant amount of up-to-
date security knowledge. Due to resource
limitations, however, in practice there is not always
time to conduct such an analysis, and the required
knowledge is often not available, particularly in
small and medium-size companies.

In the research project INSA2, a tool to support
security analyses during the engineering and opera-

2ut.hsu-hh.de/insa

Glawe, M., Tebbe, C., Fay, A. and Niemann, K..
Knowledge-based Engineering of Automation Systems using Ontologies and Engineering Data.
In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2015) - Volume 2: KEOD, pages 291-300
ISBN: 978-989-758-158-8
Copyright c© 2015 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

291

tion of automated systems has been developed. This
tool exploits the capabilities of a rule-based system
on the combination of engineering data and security
ontologies. This combination concept is discussed in
this paper.

The rest of the paper is structured as follows. In
Chapter 2 the chosen data formats for representing
facts about the automation system and the domain
knowledge for security analyses are introduced.
Chapter 3 provides a concept for connecting the
facts, given in an engineering data format, with the
security domain knowledge represented in the
ontology. A design concept for a suitable user
interface is illustrated in Chapter 4 to provide an
intuitive possibility for creating complex rules.
Finally, a short conclusion and an outlook to further
development and possible implementations of the
presented concepts for other engineering tasks are
given in Chapter 5.

2 DOMAIN & TECHNOLOGIES

In this chapter a brief introduction to the domain of
security, engineering data and ontologies is given. In
our work we designed an exemplary automation
system to proof our methods and concepts. A part of
this exemplary automation system is shown in
Figure 1.

Figure 1: Part of an automation system.

The automation system consists of Ethernet-
based intelligent sensors/actuators, further
sensors/actuators connected to a bus coupler and a
controller (PLC = Programmable Logic Controller),
which runs the automation system.

This controller communicates automation data
via OPC-UA, an automation specific communication
standard, to an industrial server. This server provides
this data via a WebServer for other users. In this

case a panel collects this data by a HTTP
communication.

The elements of the automation system are
connected by industrial Ethernet and have a
connection to the companies’ network to
communicate with other instances like a MES
(Manufacturing Execution System), an ERP
(Enterprise Resource Planning System) or the
Internet. This structure is used in the following
chapters to illustrate specific elements of our
approach.

2.1 Security of Automation Systems

While security mechanisms have been present in
Home- and Enterprise-IT for a long time, many
industrial automation systems do not have an
acceptable level of IT-Security up to now. This
originates in the fact that automation systems used to
consist of proprietary components which were not in
focus of hackers and had (nearly) no connection to
external systems. A change in mind was needed
when modern automation systems adopted more and
more standard IT techniques, like the Ethernet and
standard software. For example the industrial server
in our example runs a Windows-based operating
system while the operation system of the controllers
is Linux-based.

Especially for small- and medium-sized
companies it is hard to reach an acceptable level of
security in their automation system due to low
knowledge about security and the high effort for
implementing security in automation systems. In our
research we focus on the creation of a rule-based
system to support companies in the execution of a
security analysis for their automation systems.

For the creation of a rule-based system,
knowledge of the specific domain has to be gathered
for the current problem. It is necessary to analyse the
structure of the domain knowledge that shall be
represented, as a basis for the rule-based system. In
the case of security knowledge for automation
systems, this information can be found for example
in (IEC 62443-2-1).

The structure of an automation system is the
initial information needed to execute a security
analysis. Within this information assets must be
defined. These assets describe all elements that
should be protected. Assets and their environment
are subject to threats that can reduce the security of
the automation system. The implementation of
protection measures mitigates these threats and
improves the security of the automation system. We
described this in a generic model of a security

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

292

analysis. A similar model is briefly introduced by
(Valenzano, 2014).

2.2 Engineering Data in CAEX

In order to acquire asset data as the input for a
security analysis and therefore as facts of a
knowledge-based system, we decided to use existing
engineering exchange data formats. One of the most
recognized standards for exchanging engineering
data is the XML-based data format Computer Aided
Engineering Exchange (CAEX) (IEC 62424). A
current implementation of CAEX is represented by
the data format AML defined by the AutomationML
e.V. (www.automationml.org). For AML, various
implementations are available, e.g. an editor for
creating AML files and a .NET-based engine for
manipulating AML files.

The CAEX Model mainly consists of four
libraries, which are defined as follows:

 InstanceHierachyLibrary (IHL)
An InstanceHierarchy (IH) is a description of a
specific hierarchy of components from top-level
plant (the automation system) down to single
components (InternalElements, IEs) (e.g. the
Controller) with interfaces (ExternalInterfaces,
EIs) and relations (InternalLinks, ILs) between
these interfaces.

 SystemUnitClassLibrary (SUCL)
The reusable SystemUnitClasses (SUCs) define
the component types with their respective
technical realizations. In our example a
SystemUnitClassLibrary was created which
contains all possible components of the
automation system. These SystemUnitClasses
were used to create the InternalElements in the
InstanceHierachy. A component-catalogue from
a particular vendor is a different example of a
SystemUnitClassLibrary.

 RoleClassLibrary (RCL)
In the RoleClassLibrary, RoleClasses (RCs) are
defined as abstract description of component
requirements. Therefore standard
RoleClassLibraries are provided by the standard
and can be complemented by the user. In our
example the Panel fulfils the Role “HMI”
(Human-Machine-Interface), which describes
abstract control equipment without giving any
information about the specific component.

 InterfaceClassLibrary (ICL)
The InterfaceLibrary consists of reusable
InterfaceClasses (ICs) for specifying connection
points of RCs, SUCs, and interface types of EIs.

Regarding knowledge-based systems,
RoleClassLibrary, SystemUnitClassLibrary and
InterfaceClassLibrary contain domain knowledge
about possible parts of the automation system, while
the InstanceHierachyLibrary contains facts about
the specific project under investigation.

2.3 Ontologies

Besides the information about automation systems,
the security knowledge must also be formalized. A
possible approach for the required formalization is
the use of ontologies. In computer science the term
ontology defines an explicit and formal specification
of a conceptualization of a part of the real world
(Antoniou and van Harmelen, 2012). Ontologies
have already proven to be useful for the engineering
of automation systems (e.g. Runde and Fay, 2011,
Linnenberg et al., 2013). Donner and Ekelhart
(Donner, 2003; Ekelhart et al., 2007) have shown
that security knowledge can be described in form of
ontologies, which allows the processing of queries
by using existing query languages such as SPARQL.

Based on the aforementioned works, we also
decided to use ontologies for our task. Specifically
in the research project INSA, the "Web Ontology
Language" (OWL) (W3C 2014 OWL) has been
applied to describe the structure and content of the
security knowledge in form of an ontology. OWL is
specified as a Semantic Web standard by the W3C.
It can be interpreted by humans as well as machines.
The main part of our ontology consists of security
threats, protection measures, their properties and the
relationships between them.

Regarding the inference capabilities of the expert
system, it is necessary that a reasoner (inference
mechanism) can execute an analysis in a limited
time frame. This is why we used OWL DL as a
subset of the full OWL language. The appendix DL
stands for description logic, which means OWL DL
is comparable to the well-studied description logic.
OWL full is known to be undecidable
(http://www.w3.org/TR/owl-ref/), whereas OWL
DL, with its restrictions, is decidable. This permits
efficient reasoning support.

In order to use rules which can easily describe
the relations between concepts of the real world
(assets, threats and protection measures in our case),
we used the Semantic Web Rule Language (SWRL).
SWRL enables the usage of Horn-like rules (W3C
2014 SWRL) for OWL ontologies. This is another
reason for using OWL DL because SWRL is based
on OWL DL and RuleML and combines them. The
implication rules of SWRL are perfectly usable to

Knowledge-based Engineering of Automation Systems using Ontologies and Engineering Data

293

represent security knowledge in our ontology.
Contrary to OWL, SWRL is not a W3C standard,
but has the status of a W3C Member Submission and
is used in many applications. The syntax of rules in
SWRL is:

antecedent => consequent

This allows to define all dependencies on the
“antecedent”-side (IF-part) and the resulting
consequence on the “consequent”-side, which only
applies if the “antecedent” is satisfied (THEN-part).

Contrary to our project, the works of (Donner,
2003) and (Ekelhart et al., 2007) analyse Enterprise-
IT-Security and are not based on an import
document, which contains the assets. In their works,
it is supposed that security threats are analysed by
human experts before the ontology can be evaluated.
From our point of view, the generation of security
threats from a given system infrastructure (assets)
appears to be the most difficult task. Therefore, in
our approach, the structure of the automation system
is exported as a CAEX file during the engineering
process, and this file is imported into the rule-based
system.

3 COMBINATION CONCEPT

3.1 Basic Concept

As described before, the security domain knowledge
is given in OWL/SWRL. This includes knowledge
about possible threats and protection measures as
well as rules, which infer new knowledge from the
given facts. The facts about the automation system
and the domain knowledge about possible
components of the automation system are
represented in CAEX. Thereby facts of the
automation system are represented in the IHL, while
domain knowledge about possible components of an
automation system given in the SUCL, RCL and
ICL. For executing the rules, a connection between
the CAEX structure and OWL/SWRL is needed.
Therefore, we developed a concept to connect all
elements of the CAEX model with the OWL
ontology by a small number of explicit and well
defined operators, usable in SWRL rules. These
operators are based on OWL Properties (object and
data properties) and are used as part of the SWRL
Rules in such a way that all relevant parts of the
CAEX model could be addressed. Therefore the
CAEX meta model, defined in (IEC 62424), gives
an idea which elements have to be addressed. Before
defining the specific operators a basic operator

structure is defined. The operators should always
look like:

COP_AOP_SOP(SWRL_Att1, SWRL_Att2)

In this notation, COP is a compare operator to define
the sort of comparison between the CAEX element
and the SWRL attribute. Up to now, compare
operators for equality (has) and non-equality
(hasNOT) as well as operators like more (hasMore)
or less (hasLess) for version numbers or countable
attribute values have been implemented. The further
operators in and notIN check whether a given
element is part of an enumeration which is
represented in the ontology. AOP represents the
address operator which defines the elements of the
CAEX Meta Model (RoleClassLibrary,
SystemUnitClassLibrary and InterfaceClassLibrary)
to look for. It is the most important part of the
operator which points to specific positions in the
CAEX model. For supplementary information, the
AOP operator can, in some cases, be extended by the
supplementary operator SOP. The SWRL attributes
SWRL_Att1 and SWRL_Att2 can either be a
variable pointing to an element of the CAEX Model,
an OWL individual, or the value which should be
checked. The AOP and the optional SOP operators
will be described in the following chapter.

3.2 CAEX Operators

In this chapter the operators pointing to the parts of
the CAEX model are explained. As the facts for the
current problem are given in the InstanceHierachy,
the InternalElements in this library have to be
checked. Due to this, the operators should be able to
address all elements of these InternalElements. For a
better understanding Figure 2 shows a part of the
InstanceHierachy from our example describing the
industrial server.

Figure 2: CAEX Representation of an industrial server.

As the InternalElements are instances of the
SystemUnitClasses, an operator is needed which

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

294

checks, if the InternalElement is the instance of a
SystemUnitClass. For this reason the AOP operator
CAEXClass(?var, "Classname") is defined,
which checks, if an InternalElement ?var is an
instance of the SystemUnitClass "Classname". In
this case has is the COP operator equals. Due to the
hierarchical structure of the
SystemUnitClassLibraries, "Classname" can be the
name of a specific SystemUnitClass or a group of
SystemUnitClasses. In our example the class “VL
BPC 1000” is a child class of the class “Hardware”.
Due to this the operator has_CAEXClass(?x,
"Hardware") would also return true for the
industrial server.

In the same way like described for
SystemUnitClasses the operators CAEXRole(?var,
"Rolename")and CAEXInterface(?var,
"Interface") are defined to check the RoleClass
and the Interfaces of an InternalElement. Deviating
from the SystemUnitClass for RoleClasses it is
necessary to differentiate between RoleClasses and
SupportedRoleClasses. For this reason, the operator
can be expanded by the SOP "Supported".

Additionally InternalElements can contain
attributes. Attributes are described by a name and
the associated value. A general definition for all
possible attributes is not possible, because attributes
can be defined by the users without restrictions. By
this, an operator is needed which can be defined
generally but adopted dynamically to the existing
attributes. Therefore an operator was defined as
CAEXAttribute_AttName(?var,"AttVal").
This operator can match all attributes by just adding
the appropriate attribute name as SOP. Because an
attribute can be added to Interfaces, as well as
InternalElements, a comparable operator is needed
to access attributes of an Interface. This operator
was defined as
CAEXInterfaceAttribute_AttName(?var,
"AttName"). By this a combination of checks for
Interfaces and the concerning attributes of this
interfaces is possible. For example a check like
has_CAEXInterface(?x,"Socket_RJ45"),
has_CAEXInterfaceAtribute_Used(?x,true)
checks for all InternalElements with at least one
RJ45 interface which is used. This operator will
return true for the industrial server if one of the RJ45
sockets is used.

After having defined all operators to check the
parts of an InternalElement, it is necessary to enable
the rules to represent the structure of the automation
system depicted in the InstanceHierachy. For this
two more operators are needed to connect
InternalElements.

Figure 3: InternalElement including InternalElement.

Due to the hierarchical structure of CAEX,
InternalElements can include other Internal
Elements. The example in Figure 3 shows a
controller used in an automation system which
includes two other InternalElements representing the
firmware of the controller and an OPC-UA Client.
This enables the controller to communicate
automation data to an associated OPC-UA server.
To check for such structures the operator
CAEXInternalElement(?var1,?var2) has been
defined for checking whether the InternalElement
represented by ?var2 is part of the InternalElement
represented by ?var1. A check for a part of the
structure, shown in Figure 3, looks like
has_CAEXClass(?x,"VL_BPC_1000"),
has_CAEXClass(?y,"WebServer"),
has_CAEXInternalElement(?x,?y).

In a similar way the operator
CAEXInternalLink(?var1,?var2) has been
defined to check for Internal Links. InternalLinks
connect two Interfaces to each other, thus
representing physical or logical connections or other
types of relationships.

3.3 Combining Operators and
Implementation

With the given operators (AOP) and their
supplementing operators (SOP), all facts given in an
InstanceHierachy can be addressed. The
combination with the compare operators (COP)
leads to the complete operator. Although not all
combinations of AOP and COP are possible, the
compare operators has and hasNOT- are combinable
with all CAEX operators.

Contrary to this, the compare operators hasMore
and hasLess, which check whether a value is
greater or lower than a given value, can only be
interpreted for countable values like version
numbers as a possible attribute. For
CAEXInternalElement and CAEXInternalLink
the operators in and NOTin are useless. These
relationships can either exist or not, i.e. they cannot
have any other state. The possible combinations of
compare operator and address operator are shown in
Table 1.

Knowledge-based Engineering of Automation Systems using Ontologies and Engineering Data

295

Table 1: Possible combination of compare operator and
address operator.

C
A

E
X

C
la

ss

C
A

E
X

R
ol

e

C
A

E
X

In
te

rf
ac

e

C
A

E
X

A
tt

ri
bu

te

C
A

E
X

In
er

fa
ce

A

tt
ri

bu
te

C
A

E
X

In
te

rn
al

E

le
m

en
t

C
A

E
X

In
te

rn
al

L

in
k

has X X X X X X X
hasNOT X X X X X X X
hasMore X X
hasLess X X
in X X X X X
NOTin X X X X X

With these operators defined a reasoner is
needed to process the SWRL rules. As shown
before, the operators (OWL properties) directly
address parts of the CAEX Model (using OWL
Literals). By this, new methods are needed to check
all parts of a rule, containing operators of our
concept. AutomationML, as an implementation of
CAEX, is used as part of the reasoner. The existing
AutomationML Engine (Automation-ML 2015) is
used to provide the functionalities needed to
implement the defined operators. Up to now all
operators can be implemented and connections to the
OWL Elements can be evaluated. The rules created
within our security ontology easily describe the
relation between assets, threats and protection
measures. For example a rule combines all hardware
elements with an USB Interface with the threat TH4
that represents the threat "storage elements
are not properly checked before being
used" at this element. This rule can be represented
as follows:

has_CAEXClass(?x,"Hardware"),
has_CAEXInterface(?x,"USB")
-> Threat(TH4)

With our additional methods, based on the
AutomationML Engine, we are able to evaluate this
rule and to infer corresponding OWL individuals
(threats and protection measures). By this we can
proof that our concept is able to connect CAEX
models given in AML with ontologies given in
OWL by using well defined OWL/SWRL operators.
After an initial test of the designed methods, the
operators are currently intensively tested to find
potential needs for further adjustment of the
implementation. By now only small adjustments
have been required, and no further operators had to
be defined.

3.4 Comparison to Existing Works

Another way to combine ontologies and engineering
data is the conversion of CAEX to OWL.
Theoretically OWL is able to represent all
knowledge stored in CAEX. There already are
works in this field like (Runde et al., 2009) and
(Abele et al., 2013) which are converting CAEX
structures to OWL to use existing query tools for
solving some explicit tasks. The approach of (Abele
et al., 2013) is aiming on answering single questions
to check a CAEX Model for inconsistencies.
Therefore the questions are given in existing query
languages like SPARQL and are not using SWRL
for a rule-based system. Also this approach provides
the possibility to create SWRL Rules, the creation of
rules and the preparation of the conversion from
CAEX to OWL needs a high effort of preparation.
The approach of (Runde et al., 2009) uses a
knowledge-based system with SWRL rules for
assisting the engineering in building automation.
This approach can be adapted to other problem
domains but intends much effort in the preparation
of the transformation.

Due to the transformation to OWL both
approaches can use existing reasoning or
questioning tools and do not need additional
reasoning tools. But both approaches are only
transforming the CAEX Model to OWL and are
applying checks. Concerning these facts these
approaches should always be used to solve specific
questions concerning the CAEX Model without
creating changes to the CAEX Model.

On the other hand adapting changes to the CAEX
Model is hard to be done. In the cases of (Abele et
al., 2013) a transformation back to a CAEX Model is
not intended and will lead to a loss of information.
Therefore the adaption of information to the CAEX
Model is not possible. The approach of (Runde et
al., 2009) enables the transformation back to a
CAEX File but assumes the creation of a special
transformation, which contains meta information
about the CAEX model and its transformation. The
handling of these is complicated and prone to errors.
By direct access to the CAEX Model our concept
provides the possibility to use the CAEX Model
after applying the knowledge in other tools without
the risk of information loss. Also it allows a direct
adoption of changes in the CAEX model without
any additional effort.

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

296

4 USER INTERFACE CONCEPT

For checking special structures in automation
systems, complex rules need to be created. Figure 4
shows a simple example of a possible part of an
automation system which should be covered by the
defined operators. In this example, a Programmable
Logic Controller (PLC) communicates via an OPC-
UA based communication with a Human-Machine
Interface (HMI). One attribute of the OPC-UA
communication is the attribute "transport
operator screen". This describes that
information about the operator screen is transported
from the PLC to a displaying unit. This attribute
should be appended to this OPC-UA communication
and set to "true", if not existing.

Figure 4: Part of an automation system.

Creating this rule, using the provided concept, it
looks like depicted below.

has_CAEXClass(?PLC, "PLC"),
has_CAEXInterface(?PLC, "OPC_UA"),
has_CAEXInternalLink(?PLC,?Comm),
has_CAEXClass(?Comm, "OPC-UA"),
has_CAEXInternal_Link(?Comm,?HMI),
has_CAEXInterface(?HMI, "OPC_UA"),
has_CAEXClass(?HMI, "HMI") ->
has_CAEXAttribute_
TransportOperatorScreen(?Comm, "true")

It is easy to understand that it is already difficult to
create such rules in ontology editors like Protégé
(http://protege.stanford.edu/). It becomes even more
difficult when one tries to read or edit the XML code
directly. Representing the SWRL rule in XML/RDF,
the depicted rule contains of more than 100 lines of
XML code. Editing such a complex rule manually it
is likely to create syntactical wrong rules which are
prone to errors.

Therefore a user interface concept was needed
which matches the following requirements.
 Allow an intuitive creation of Rules which

reference to a CAEX model.
 Ensure that the created rules are syntactical

correct and formulated in the right way.
 Allow a visible connection between the variable,

used as SWRL-Attribute and the CAEX
Element.

 Reduce the needed knowledge about
OWL/SWRL and CAEX when creating rules

 Provide all possible search elements and findable
values to the user while creating the rule.

 Only allow to create permitted combinations of
compare operators and address operators.

Following these requirements using a graphical user
interface (GUI) for rule creation is the best solution
to support the knowledge engineer. At this point we
focus on rules just containing operators pointing to
elements of the CAEX model. In our project we
created rule parts for elements of the example OWL
security ontology. Up to now an extension for
variable knowledge from other knowledge domains
given in OWL ontologies is undone. The GUI was
developed for German small and medium-sized
enterprises. For this reason, some wordings in the
example view given in Figure 5, are shown in
German.

To develop an intuitive interface for rule
creation, it is necessary to show the
InternalElements in a compact and sorted view,
where all operators assigned to it stick together. This
was developed in a way that one or more operators
for one InternalElement can be added. This is shown
on the left side (1) of Figure 5 were the antecedent
elements of the described rule were shown. The
elements are grouped by the InternalElement they
represent. To prevent creation of ineligible
combinations of compare operators and address
operators, the compare operators are provided based
on the address operator, selected before (2). For
example: After choosing "Class”" (in German
"Klasse" in Figure 5) only the permitted compare
operators are selectable.

Especially the operators for checking
InternalLinks and the hierarchy of InternalElements
are complex. Larger rules to check complex
structures with more than two InternalElements
make rules more complex and hard to understand.
To mitigate this problem on the lower right side of
an InternalElement (3) two buttons allow an
intuitive generation of these structures. The existing
structures are shown on the upper right side (4) of an
InternalElement. This is shown at the assets "Comm"
and "HMI".

It is an important requirement to use elements
that can be inferred only. This prevents rules from
pointing to elements not contained in the CAEX
model. For solving this problem we assume that the
parts of the CAEX model belonging to the domain
knowledge fulfil all requirements which the

Knowledge-based Engineering of Automation Systems using Ontologies and Engineering Data

297

Figure 5: Knowledge Engineers view for rule creation.

knowledge engineer needs to create the rules.
Otherwise these elements must be added to the
libraries (SystemUnitClassLibrary,
RoleClassLibrary, InterfaceClassLibrary). Before
starting to create rules, these libraries are searched
for all possible elements. Only these elements can be
chosen in the drop-down fields. This is shown in
Figure 5 on the right side (5) where the attribute
"TransportOperatorScreen" is chosen as part
of the consequent (German: "Konklusion") of the
rule.

To keep the knowledge base decidable, only
rules using existing individuals from the ontology in
both body and head are used. These are so called
"dl-safe-rules" (Staab and Studer, 2009). Based on
an OWL DL ontology, a reasoner is able to infer
new knowledge in a finite time. In INSA this allows
to infer protection measures for given assets. For
keeping our ontology decidable in this view we
enabled our knowledge engineering component to
add all used operators as object respectively data
properties to our ontology. The object properties are
used to point to existing individuals and the data
properties point to the CAEX model using Literals.

By the described system a GUI for the
knowledge engineer was designed. This GUI is easy
to learn and enables the knowledge engineer to
create rules in short terms. In first tests knowledge
engineers of the domain of security knowledge can
use the GUI after half an hour of introduction.
Depending on the complexity of the rule to create,
they needed up to a few minutes to create it.

Parts of the knowledge base had to be created
using Protégé. After the implementation and usage
of the GUI the experts found it easier and more
comfortable to create new rules or find and edit
existing rules. They needed up to 50% less time for
the creation of new rules especially for complex
rules.

5 VALIDATION & CONCLUSION

To validate our concepts we created a small
ontology containing out of approximately 50 threats
and protection measures represented in OWL and 20
Rules given in SWRL. We applied this knowledge
base to the CAEX Model representing the
automation system shown in Figure 1 to identify the
appropriate threats and protection measures for this
automation system. In the result a security concept
based on the knowledge base and the CAEX Model
was generated in less than a second. We proofed,
that basing on the given knowledge the security
concept was generated correct. In a further step a
much larger knowledge base with 200 threats and
protection measures and nearly 400 rules was
created by security experts. The much more complex
security concepts generated with this knowledge
base are currently reviewed by security experts to
validate their correctness.

Up to now we have shown a concept for
connecting engineering data given in CAEX with
security knowledge represented in OWL by using

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

298

SWRL rules with specific operators. Additionally
we presented a user concept for an easy creation of
these specific rules basing on the domain knowledge
from the CAEX model. In addition to that we have
shown a current implementation and the feasibility
of main parts from the described concept.

Intensive testing is performed to identify possible
optimization potential. In a further step, we plan to
extend our concept to other engineering tasks. It is
also necessary to enable the GUI to access variable
OWL ontologies as a basis for the implementation in
other tools (for example the editor for
AutomationML files). With such an implementation,
engineers can easily create checks, supplements or
manipulation to large CAEX files with just creating
some rules. This supports the execution of extensive
and error-prone tasks, making them more easy and
manageable.

ACKNOWLEDGEMENTS

The authors would like to thank the Federal Ministry
of Economic Affairs and Energy (BMWi) and the
participating partners in the INSA project for their
funding and support.

REFERENCES

Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S.,
Kowalewski, S., Wollschlaeger, M., Göhner, P., 2014,
Challenges for Software Engineering in Automation.
Journal of Software Engineering and Applications, 7,
pp. 440-451.

Frank, T., Eckert, K., Hadlich, T., Fay, A., Diedrich, C.,
Vogel-Heuser, B, 2012, Workflow and decision
support for the design of distributed automation
systems. IEEE Int. Conf. on Industrial Informatics
(INDIN), Beijing, China.

Strube, M., Runde, S., Figalist, H., Fay, A.: Risk
Minimization in Modernization Projects of Plant
Automation – a Knowledge-Based Approach by
means of Semantic Web Technologies, IEEE
International Conference on Emerging Technologies
and Factory Automation, 2011

Runde, S., Fay, A., 2011, Software Support for Building
Automation Requirements Engineering - An
Application of Semantic Web Technologies in
Automation, IEEE Transactions on Industrial
Informatics, Volume 7, Issue, 4 pp. 723-730.

Giarratano, J.C., Riley, G.D., 2005, ExpertSystems –
Priciples and Programming, Course Technology,
Thomson Learning, Boston

Legat, C., Lamparter, S., Vogel-Heuser, B., 2013,
Knowledge-Based Technologies for Future Factory

Engineering and Control In: Service Orientation in
Holonic and Multi Agent Manufacturing and Robotics
2013, Springer, Berlin

Russel, S., Norvig, P., 2010, Artifical Intelligence: A
modern approach, Pearson, Boston

Fulcher, J., Jain, Lakhmi, 2008, Computational
Intelligence: A Compendium, Springer-Verlag

Schmidberger, T., Fay, A., 2007, A rule format for
industrial plant information reasoning, IEEE Int. Conf.
on Emerging Technologies and Factory Automation
(ETFA), Patras, Greece.

Güttel, K., Weber, P., Fay, A., 2008, Automatic generation
of PLC code beyond the nominal sequence, IEEE Int.
Conf. on Emerging Technologies and Factory
Automation (ETFA), Hamburg, Germany.

Christiansen, L., Fay, A., Opgenoorth, B., Neidig, J.,
2011, Improved Diagnosis by Combining Structural
and Process Knowledge, IEEE Int. Conf. on Emerging
Technologies and Factory Automation (ETFA),
Toulouse, France.

Schreiber, S., Schmidberger, T., Fay, A., May, J., Drewes,
J., Schnieder, E., 2007, UML-based safety analysis of
distributed automation systems, IEEE Int. Conf. on
Emerging Technologies and Factory Automation
(ETFA), Patras, Greece.

IEC 62443-2-1, 2010, Security for industrial automation
and control systems - Establishing an industrial
automation and control system security program, IEC,
www.iec.ch

Valenzano, A., 2014, Industrial Cybersecurity –
Improving Security Through Access Control Policy
Models, In IEEE Industrial Electronics Magazine
June 2014, IEEE

Antoniou, G., van Harmelen, F., 2012, A semantic web
primer. MIT Press, Cambridge, Mass.

Runde, S., Dibowski, H., Fay, A., Kabitzsch, K., 2009,
Semantic Requirement Ontology for the Engineering
of Building Automation. IEEE Int. Conf. Emerging
Technologies and Factory Automation (ETFA),
Mallorca, Spain.

Linnenberg, T., Mueller, A. W., Christansen, L., Seitz, C.,
Fay, A., 2013, OntoEnergy - A lightweight ontology
for supporting energy efficiency tasks. Int. Conf.
Knowledge Engineering and Ontology Development
(KEOD), Faro, Portugal.

World Wide Web Consortium, 2014, OWL. Web
Ontology Language.
http://www.w3.org/2001/sw/wiki/OWL

Donner, M., 2003, Toward a security ontology, In IEEE
Security and Privacy, IEEE

Ekelhart, A., Fenz, S., Klemen, M., Weippl, E., 2007,
Security Ontologies: Improving Quantitative Risk
Analysis, In IEEE Proceedings of the 40th Hawaii
International Conference on System Sience, IEEE

World Wide Web Consortium, 2014, SWRL. A Semantic
Web Rule Language Combining OWL and RuleML,
http://www.w3.org/Submission/SWRL/

IEC 62424, 2008, IEC 62424:200x - Specification for
Representation of process control engineering requests
in P&I Diagrams and for data exchange between

Knowledge-based Engineering of Automation Systems using Ontologies and Engineering Data

299

P&ID tools and PCE-CAE
Runde, S., Fay, A., Wutzke, W.-O., 2009, Knowledge-

based requirement-engineering of building automated
systems by means of semantic web technologies, In
IEEE International Conference on Industrial
Informatics (INDIN), Cardiff, U.K.

Abele, L., Legat, C., Grimm, S., Müller, A., 2013,
Ontology-based Validation of Plant Models. In IEEE
11th International Conference, IEEE

Staab, S., Studer, R., 2009, Handbook on ontologies.
International handbooks on information systems.
Springer, Berlin.

AutomationML, 2015, AML-Engine version 3.1,
https://www.automationml.org/o.red/uploads/dateien/1
427889211-AutomationML%20Engine_v3.1.zip, last
checked 06.07.2015.

KEOD 2015 - 7th International Conference on Knowledge Engineering and Ontology Development

300

