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Abstract: Ontologies provide an effective way for describing and using knowledge of a specific domain. In 
engineering workflows the reusability and quick adoption of knowledge is needed for solving several tasks 
in efficient ways. Engineering data is mostly structured in hierarchical documents and exchange formats, 
but is not represented in ontologies. Therefore a connection between engineering data and the knowledge in 
ontologies is needed. In this article we present a bridge concept for connecting engineering data with an 
OWL-based ontology. For this we use an example ontology containing security knowledge of automation 
systems. 

1 INTRODUCTION 

The engineering of an automation system for a 
production plant or a building requires significant 
effort and a dedicated workflow, organised in 
subsequent phases (Vogel-Heuser et al., 2014). 
Within this engineering workflow, some tasks 
require creativity, whereas other phases are 
characterised to be repetitive and tedious tasks, 
which makes the use of software tools advisable 
(Frank et al., 2012). Especially for the repetitive 
tasks, the use of knowledge-based support tools has 
proven to be advantageous in terms of effort savings, 
time savings, and quality assurance (Strube et al., 
2011, Runde and Fay, 2011, Legat et al., 2013). If 
the engineering expert’s knowledge can be 
formulated in IF-THEN statements, these rules can 
be applied on the engineering data of the current 
engineering project. These form the facts1 of the 
current problem, from the perspective of the 
knowledge-based systems (Russell and Norvig, 
2010; Fulcher and Jain, 2008). 

In the engineering workflow, rule-based systems 
can not only support the creation of engineering  

 
1”The term facts mean information that is considered reliable. 

Expert systems draw inferences using facts.” (Giarratano 2005, 
p. 72). 

results (e.g. Schmidberger and Fay, 2007; Güttel et 
al., 2008) but also the analysis of engineering results 
regarding e.g. completeness, reliability (e.g. 
Christiansen, 2011) and safety (e.g. Schreiber, 
2007). Recently, the analysis of the automation 
system’s design regarding IT security threats has 
become more important due to increased 
vulnerability of commercial-of-the-shelf components 
and standard communication technologies in 
automation systems. Therefore, IT security analyses, 
denoted as security analyses in the following, of the 
automation system have to be conducted. These 
analyses should take place during the design of the 
automation system as well as along its operation 
(IEC 62443-2-1). Security analyses might be highly 
complex and time consuming, as many details 
regarding the automation system and the 
implementation environment have to be considered. 
Likewise, they require a significant amount of up-to-
date security knowledge. Due to resource 
limitations, however, in practice there is not always 
time to conduct such an analysis, and the required 
knowledge is often not available, particularly in 
small and medium-size companies. 

In the research project INSA2, a tool to support 
security  analyses  during the engineering and opera- 
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tion of automated systems has been developed. This 
tool exploits the capabilities of a rule-based system 
on the combination of engineering data and security 
ontologies. This combination concept is discussed in 
this paper. 

The rest of the paper is structured as follows. In 
Chapter 2 the chosen data formats for representing 
facts about the automation system and the domain 
knowledge for security analyses are introduced. 
Chapter 3 provides a concept for connecting the 
facts, given in an engineering data format, with the 
security domain knowledge represented in the 
ontology. A design concept for a suitable user 
interface is illustrated in Chapter 4 to provide an 
intuitive possibility for creating complex rules. 
Finally, a short conclusion and an outlook to further 
development and possible implementations of the 
presented concepts for other engineering tasks are 
given in Chapter 5. 

2 DOMAIN & TECHNOLOGIES 

In this chapter a brief introduction to the domain of 
security, engineering data and ontologies is given. In 
our work we designed an exemplary automation 
system to proof our methods and concepts. A part of 
this exemplary automation system is shown in 
Figure 1.  

 

Figure 1: Part of an automation system. 

The automation system consists of Ethernet-
based intelligent sensors/actuators, further 
sensors/actuators connected to a bus coupler and a 
controller (PLC = Programmable Logic Controller), 
which runs the automation system.  

This controller communicates automation data 
via OPC-UA, an automation specific communication 
standard, to an industrial server. This server provides 
this data via a WebServer for other users. In this 

case a panel collects this data by a HTTP 
communication. 

The elements of the automation system are 
connected by industrial Ethernet and have a 
connection to the companies’ network to 
communicate with other instances like a MES 
(Manufacturing Execution System), an ERP 
(Enterprise Resource Planning System) or the 
Internet. This structure is used in the following 
chapters to illustrate specific elements of our 
approach. 

2.1 Security of Automation Systems 

While security mechanisms have been present in 
Home- and Enterprise-IT for a long time, many 
industrial automation systems do not have an 
acceptable level of IT-Security up to now. This 
originates in the fact that automation systems used to 
consist of proprietary components which were not in 
focus of hackers and had (nearly) no connection to 
external systems. A change in mind was needed 
when modern automation systems adopted more and 
more standard IT techniques, like the Ethernet and 
standard software. For example the industrial server 
in our example runs a Windows-based operating 
system while the operation system of the controllers 
is Linux-based. 

Especially for small- and medium-sized 
companies it is hard to reach an acceptable level of 
security in their automation system due to low 
knowledge about security and the high effort for 
implementing security in automation systems. In our 
research we focus on the creation of a rule-based 
system to support companies in the execution of a 
security analysis for their automation systems.  

For the creation of a rule-based system, 
knowledge of the specific domain has to be gathered 
for the current problem. It is necessary to analyse the 
structure of the domain knowledge that shall be 
represented, as a basis for the rule-based system. In 
the case of security knowledge for automation 
systems, this information can be found for example 
in (IEC 62443-2-1).  

The structure of an automation system is the 
initial information needed to execute a security 
analysis. Within this information assets must be 
defined. These assets describe all elements that 
should be protected. Assets and their environment 
are subject to threats that can reduce the security of 
the automation system. The implementation of 
protection measures mitigates these threats and 
improves the security of the automation system. We 
described this in a generic model of a security 
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analysis. A similar model is briefly introduced by 
(Valenzano, 2014). 

2.2 Engineering Data in CAEX 

In order to acquire asset data as the input for a 
security analysis and therefore as facts of a 
knowledge-based system, we decided to use existing 
engineering exchange data formats. One of the most 
recognized standards for exchanging engineering 
data is the XML-based data format Computer Aided 
Engineering Exchange (CAEX) (IEC 62424). A 
current implementation of CAEX is represented by 
the data format AML defined by the AutomationML 
e.V. (www.automationml.org). For AML, various 
implementations are available, e.g. an editor for 
creating AML files and a .NET-based engine for 
manipulating AML files. 

The CAEX Model mainly consists of four 
libraries, which are defined as follows: 

 InstanceHierachyLibrary (IHL) 
An InstanceHierarchy (IH) is a description of a 
specific hierarchy of components from top-level 
plant (the automation system) down to single 
components (InternalElements, IEs) (e.g. the 
Controller) with interfaces (ExternalInterfaces, 
EIs) and relations (InternalLinks, ILs) between 
these interfaces.  

 SystemUnitClassLibrary (SUCL) 
The reusable SystemUnitClasses (SUCs) define 
the component types with their respective 
technical realizations. In our example a 
SystemUnitClassLibrary was created which 
contains all possible components of the 
automation system. These SystemUnitClasses 
were used to create the InternalElements in the 
InstanceHierachy. A component-catalogue from 
a particular vendor is a different example of a 
SystemUnitClassLibrary.  

 RoleClassLibrary (RCL) 
In the RoleClassLibrary, RoleClasses (RCs) are 
defined as abstract description of component 
requirements. Therefore standard 
RoleClassLibraries are provided by the standard 
and can be complemented by the user. In our 
example the Panel fulfils the Role “HMI” 
(Human-Machine-Interface), which describes 
abstract control equipment without giving any 
information about the specific component. 

 InterfaceClassLibrary (ICL) 
The InterfaceLibrary consists of reusable 
InterfaceClasses (ICs) for specifying connection 
points of RCs, SUCs, and interface types of EIs. 

Regarding knowledge-based systems, 
RoleClassLibrary, SystemUnitClassLibrary and 
InterfaceClassLibrary contain domain knowledge 
about possible parts of the automation system, while 
the InstanceHierachyLibrary contains facts about 
the specific project under investigation. 

2.3 Ontologies 

Besides the information about automation systems, 
the security knowledge must also be formalized. A 
possible approach for the required formalization is 
the use of ontologies. In computer science the term 
ontology defines an explicit and formal specification 
of a conceptualization of a part of the real world 
(Antoniou and van Harmelen, 2012). Ontologies 
have already proven to be useful for the engineering 
of automation systems (e.g. Runde and Fay, 2011, 
Linnenberg et al., 2013). Donner and Ekelhart 
(Donner, 2003; Ekelhart et al., 2007) have shown 
that security knowledge can be described in form of 
ontologies, which allows the processing of queries 
by using existing query languages such as SPARQL.  

Based on the aforementioned works, we also 
decided to use ontologies for our task. Specifically 
in the research project INSA, the "Web Ontology 
Language" (OWL) (W3C 2014 OWL) has been 
applied to describe the structure and content of the 
security knowledge in form of an ontology. OWL is 
specified as a Semantic Web standard by the W3C. 
It can be interpreted by humans as well as machines. 
The main part of our ontology consists of security 
threats, protection measures, their properties and the 
relationships between them.  

Regarding the inference capabilities of the expert 
system, it is necessary that a reasoner (inference 
mechanism) can execute an analysis in a limited 
time frame. This is why we used OWL DL as a 
subset of the full OWL language. The appendix DL 
stands for description logic, which means OWL DL 
is comparable to the well-studied description logic. 
OWL full is known to be undecidable 
(http://www.w3.org/TR/owl-ref/), whereas OWL 
DL, with its restrictions, is decidable. This permits 
efficient reasoning support.  

In order to use rules which can easily describe 
the relations between concepts of the real world 
(assets, threats and protection measures in our case), 
we used the Semantic Web Rule Language (SWRL). 
SWRL enables the usage of Horn-like rules (W3C 
2014 SWRL) for OWL ontologies. This is another 
reason for using OWL DL because SWRL is based 
on OWL DL and RuleML and combines them. The 
implication rules of SWRL are perfectly usable to 
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represent security knowledge in our ontology. 
Contrary to OWL, SWRL is not a W3C standard, 
but has the status of a W3C Member Submission and 
is used in many applications. The syntax of rules in 
SWRL is: 

antecedent => consequent 

This allows to define all dependencies on the 
“antecedent”-side (IF-part) and the resulting 
consequence on the “consequent”-side, which only 
applies if the “antecedent” is satisfied (THEN-part). 

Contrary to our project, the works of (Donner, 
2003) and (Ekelhart et al., 2007) analyse Enterprise-
IT-Security and are not based on an import 
document, which contains the assets. In their works, 
it is supposed that security threats are analysed by 
human experts before the ontology can be evaluated. 
From our point of view, the generation of security 
threats from a given system infrastructure (assets) 
appears to be the most difficult task. Therefore, in 
our approach, the structure of the automation system 
is exported as a CAEX file during the engineering 
process, and this file is imported into the rule-based 
system. 

3 COMBINATION CONCEPT 

3.1 Basic Concept 

As described before, the security domain knowledge 
is given in OWL/SWRL. This includes knowledge 
about possible threats and protection measures as 
well as rules, which infer new knowledge from the 
given facts. The facts about the automation system 
and the domain knowledge about possible 
components of the automation system are 
represented in CAEX. Thereby facts of the 
automation system are represented in the IHL, while 
domain knowledge about possible components of an 
automation system given in the SUCL, RCL and 
ICL. For executing the rules, a connection between 
the CAEX structure and OWL/SWRL is needed. 
Therefore, we developed a concept to connect all 
elements of the CAEX model with the OWL 
ontology by a small number of explicit and well 
defined operators, usable in SWRL rules. These 
operators are based on OWL Properties (object and 
data properties) and are used as part of the SWRL 
Rules in such a way that all relevant parts of the 
CAEX model could be addressed. Therefore the 
CAEX meta model, defined in (IEC 62424), gives 
an idea which elements have to be addressed. Before 
defining the specific operators a basic operator 

structure is defined. The operators should always 
look like: 

COP_AOP_SOP(SWRL_Att1, SWRL_Att2) 

In this notation, COP is a compare operator to define 
the sort of comparison between the CAEX element 
and the SWRL attribute. Up to now, compare 
operators for equality (has) and non-equality 
(hasNOT) as well as operators like more (hasMore) 
or less (hasLess) for version numbers or countable 
attribute values have been implemented. The further 
operators in and notIN check whether a given 
element is part of an enumeration which is 
represented in the ontology. AOP represents the 
address operator which defines the elements of the 
CAEX Meta Model (RoleClassLibrary, 
SystemUnitClassLibrary and InterfaceClassLibrary) 
to look for. It is the most important part of the 
operator which points to specific positions in the 
CAEX model. For supplementary information, the 
AOP operator can, in some cases, be extended by the 
supplementary operator SOP. The SWRL attributes 
SWRL_Att1 and SWRL_Att2 can either be a 
variable pointing to an element of the CAEX Model, 
an OWL individual, or the value which should be 
checked. The AOP and the optional SOP operators 
will be described in the following chapter. 

3.2 CAEX Operators 

In this chapter the operators pointing to the parts of 
the CAEX model are explained. As the facts for the 
current problem are given in the InstanceHierachy, 
the InternalElements in this library have to be 
checked. Due to this, the operators should be able to 
address all elements of these InternalElements. For a 
better understanding Figure 2 shows a part of the 
InstanceHierachy from our example describing the 
industrial server. 

 

Figure 2: CAEX Representation of an industrial server. 

As the InternalElements are instances of the 
SystemUnitClasses, an operator is needed which 
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checks, if the InternalElement is the instance of a 
SystemUnitClass. For this reason the AOP operator 
CAEXClass(?var, "Classname") is defined, 
which checks, if an InternalElement ?var is an 
instance of the SystemUnitClass "Classname". In 
this case has is the COP operator equals. Due to the 
hierarchical structure of the 
SystemUnitClassLibraries, "Classname" can be the 
name of a specific SystemUnitClass or a group of 
SystemUnitClasses. In our example the class “VL 
BPC 1000” is a child class of the class “Hardware”. 
Due to this the operator has_CAEXClass(?x, 
"Hardware") would also return true for the 
industrial server. 

In the same way like described for 
SystemUnitClasses the operators CAEXRole(?var, 
"Rolename")and CAEXInterface(?var, 
"Interface") are defined to check the RoleClass 
and the Interfaces of an InternalElement. Deviating 
from the SystemUnitClass for RoleClasses it is 
necessary to differentiate between RoleClasses and 
SupportedRoleClasses. For this reason, the operator 
can be expanded by the SOP "Supported".  

Additionally InternalElements can contain 
attributes. Attributes are described by a name and 
the associated value. A general definition for all 
possible attributes is not possible, because attributes 
can be defined by the users without restrictions. By 
this, an operator is needed which can be defined 
generally but adopted dynamically to the existing 
attributes. Therefore an operator was defined as 
CAEXAttribute_AttName(?var,"AttVal"). 
This operator can match all attributes by just adding 
the appropriate attribute name as SOP. Because an 
attribute can be added to Interfaces, as well as 
InternalElements, a comparable operator is needed 
to access attributes of an Interface. This operator 
was defined as 
CAEXInterfaceAttribute_AttName(?var, 
"AttName"). By this a combination of checks for 
Interfaces and the concerning attributes of this 
interfaces is possible. For example a check like 
has_CAEXInterface(?x,"Socket_RJ45"), 
has_CAEXInterfaceAtribute_Used(?x,true) 
checks for all InternalElements with at least one 
RJ45 interface which is used. This operator will 
return true for the industrial server if one of the RJ45 
sockets is used. 

After having defined all operators to check the 
parts of an InternalElement, it is necessary to enable 
the rules to represent the structure of the automation 
system depicted in the InstanceHierachy. For this 
two more operators are needed to connect 
InternalElements. 

 

Figure 3: InternalElement including InternalElement. 

Due to the hierarchical structure of CAEX, 
InternalElements can include other Internal 
Elements. The example in Figure 3 shows a 
controller used in an automation system which 
includes two other InternalElements representing the 
firmware of the controller and an OPC-UA Client. 
This enables the controller to communicate 
automation data to an associated OPC-UA server. 
To check for such structures the operator 
CAEXInternalElement(?var1,?var2) has been 
defined for checking whether the InternalElement 
represented by ?var2 is part of the InternalElement 
represented by ?var1. A check for a part of the 
structure, shown in Figure 3, looks like 
has_CAEXClass(?x,"VL_BPC_1000"), 
has_CAEXClass(?y,"WebServer"), 
has_CAEXInternalElement(?x,?y).  

In a similar way the operator 
CAEXInternalLink(?var1,?var2) has been 
defined to check for Internal Links. InternalLinks 
connect two Interfaces to each other, thus 
representing physical or logical connections or other 
types of relationships.  

3.3 Combining Operators and 
Implementation 

With the given operators (AOP) and their 
supplementing operators (SOP), all facts given in an 
InstanceHierachy can be addressed. The 
combination with the compare operators (COP) 
leads to the complete operator. Although not all 
combinations of AOP and COP are possible, the 
compare operators has and hasNOT- are combinable 
with all CAEX operators.  

Contrary to this, the compare operators hasMore 
and hasLess, which check whether a value is 
greater or lower than a given value, can only be 
interpreted for countable values like version 
numbers as a possible attribute. For 
CAEXInternalElement and CAEXInternalLink 
the operators in and NOTin are useless. These 
relationships can either exist or not, i.e. they cannot 
have any other state. The possible combinations of 
compare operator and address operator are shown in 
Table 1. 
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Table 1: Possible combination of compare operator and 
address operator. 
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has X X X X X X X 
hasNOT X X X X X X X 
hasMore    X X   
hasLess    X X   
in X X X X X   
NOTin X X X X X   

 

With these operators defined a reasoner is 
needed to process the SWRL rules. As shown 
before, the operators (OWL properties) directly 
address parts of the CAEX Model (using OWL 
Literals). By this, new methods are needed to check 
all parts of a rule, containing operators of our 
concept. AutomationML, as an implementation of 
CAEX, is used as part of the reasoner. The existing 
AutomationML Engine (Automation-ML 2015) is 
used to provide the functionalities needed to 
implement the defined operators. Up to now all 
operators can be implemented and connections to the 
OWL Elements can be evaluated. The rules created 
within our security ontology easily describe the 
relation between assets, threats and protection 
measures. For example a rule combines all hardware 
elements with an USB Interface with the threat TH4 
that represents the threat "storage elements 
are not properly checked before being 
used" at this element. This rule can be represented 
as follows: 

has_CAEXClass(?x,"Hardware"), 
has_CAEXInterface(?x,"USB")     
-> Threat(TH4) 

 

With our additional methods, based on the 
AutomationML Engine, we are able to evaluate this 
rule and to infer corresponding OWL individuals 
(threats and protection measures). By this we can 
proof that our concept is able to connect CAEX 
models given in AML with ontologies given in 
OWL by using well defined OWL/SWRL operators. 
After an initial test of the designed methods, the 
operators are currently intensively tested to find 
potential needs for further adjustment of the 
implementation. By now only small adjustments 
have been required, and no further operators had to 
be defined. 

3.4 Comparison to Existing Works 

Another way to combine ontologies and engineering 
data is the conversion of CAEX to OWL. 
Theoretically OWL is able to represent all 
knowledge stored in CAEX. There already are 
works in this field like (Runde et al., 2009) and 
(Abele et al., 2013) which are converting CAEX 
structures to OWL to use existing query tools for 
solving some explicit tasks. The approach of (Abele 
et al., 2013) is aiming on answering single questions 
to check a CAEX Model for inconsistencies. 
Therefore the questions are given in existing query 
languages like SPARQL and are not using SWRL 
for a rule-based system. Also this approach provides 
the possibility to create SWRL Rules, the creation of 
rules and the preparation of the conversion from 
CAEX to OWL needs a high effort of preparation. 
The approach of (Runde et al., 2009) uses a 
knowledge-based system with SWRL rules for 
assisting the engineering in building automation. 
This approach can be adapted to other problem 
domains but intends much effort in the preparation 
of the transformation. 

Due to the transformation to OWL both 
approaches can use existing reasoning or 
questioning tools and do not need additional 
reasoning tools. But both approaches are only 
transforming the CAEX Model to OWL and are 
applying checks. Concerning these facts these 
approaches should always be used to solve specific 
questions concerning the CAEX Model without 
creating changes to the CAEX Model. 

On the other hand adapting changes to the CAEX 
Model is hard to be done. In the cases of (Abele et 
al., 2013) a transformation back to a CAEX Model is 
not intended and will lead to a loss of information. 
Therefore the adaption of information to the CAEX 
Model is not possible. The approach of (Runde et 
al., 2009) enables the transformation back to a 
CAEX File but assumes the creation of a special 
transformation, which contains meta information 
about the CAEX model and its transformation. The 
handling of these is complicated and prone to errors. 
By direct access to the CAEX Model our concept 
provides the possibility to use the CAEX Model 
after applying the knowledge in other tools without 
the risk of information loss. Also it allows a direct 
adoption of changes in the CAEX model without 
any additional effort. 
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4 USER INTERFACE CONCEPT 

For checking special structures in automation 
systems, complex rules need to be created. Figure 4 
shows a simple example of a possible part of an 
automation system which should be covered by the 
defined operators. In this example, a Programmable 
Logic Controller (PLC) communicates via an OPC-
UA based communication with a Human-Machine 
Interface (HMI). One attribute of the OPC-UA 
communication is the attribute "transport 
operator screen". This describes that 
information about the operator screen is transported 
from the PLC to a displaying unit. This attribute 
should be appended to this OPC-UA communication 
and set to "true", if not existing.  

 

Figure 4: Part of an automation system. 

Creating this rule, using the provided concept, it 
looks like depicted below. 

 

has_CAEXClass(?PLC, "PLC"), 
has_CAEXInterface(?PLC, "OPC_UA"), 
has_CAEXInternalLink(?PLC,?Comm), 
has_CAEXClass(?Comm, "OPC-UA"), 
has_CAEXInternal_Link(?Comm,?HMI), 
has_CAEXInterface(?HMI, "OPC_UA"), 
has_CAEXClass(?HMI, "HMI") -> 
has_CAEXAttribute_ 
TransportOperatorScreen(?Comm, "true") 

 

It is easy to understand that it is already difficult to 
create such rules in ontology editors like Protégé 
(http://protege.stanford.edu/). It becomes even more 
difficult when one tries to read or edit the XML code 
directly. Representing the SWRL rule in XML/RDF, 
the depicted rule contains of more than 100 lines of 
XML code. Editing such a complex rule manually it 
is likely to create syntactical wrong rules which are 
prone to errors. 

Therefore a user interface concept was needed 
which matches the following requirements. 
 Allow an intuitive creation of Rules which 

reference to a CAEX model. 
 Ensure that the created rules are syntactical 

correct and formulated in the right way. 
 Allow a visible connection between the variable, 

used as SWRL-Attribute and the CAEX 
Element. 

 Reduce the needed knowledge about 
OWL/SWRL and CAEX when creating rules 

 Provide all possible search elements and findable 
values to the user while creating the rule. 

 Only allow to create permitted combinations of 
compare operators and address operators. 

Following these requirements using a graphical user 
interface (GUI) for rule creation is the best solution 
to support the knowledge engineer. At this point we 
focus on rules just containing operators pointing to 
elements of the CAEX model. In our project we 
created rule parts for elements of the example OWL 
security ontology. Up to now an extension for 
variable knowledge from other knowledge domains 
given in OWL ontologies is undone. The GUI was 
developed for German small and medium-sized 
enterprises. For this reason, some wordings in the 
example view given in Figure 5, are shown in 
German. 

To develop an intuitive interface for rule 
creation, it is necessary to show the 
InternalElements in a compact and sorted view, 
where all operators assigned to it stick together. This 
was developed in a way that one or more operators 
for one InternalElement can be added. This is shown 
on the left side (1) of Figure 5 were the antecedent 
elements of the described rule were shown. The 
elements are grouped by the InternalElement they 
represent. To prevent creation of ineligible 
combinations of compare operators and address 
operators, the compare operators are provided based 
on the address operator, selected before (2). For 
example: After choosing "Class”" (in German 
"Klasse" in Figure 5) only the permitted compare 
operators are selectable. 

Especially the operators for checking 
InternalLinks and the hierarchy of InternalElements 
are complex. Larger rules to check complex 
structures with more than two InternalElements 
make rules more complex and hard to understand. 
To mitigate this problem on the lower right side of 
an InternalElement (3) two buttons allow an 
intuitive generation of these structures. The existing 
structures are shown on the upper right side (4) of an 
InternalElement. This is shown at the assets "Comm" 
and "HMI". 

It is an important requirement to use elements 
that can be inferred only. This prevents rules from 
pointing to elements not contained in the CAEX 
model. For solving this problem we assume that the 
parts of the CAEX model belonging to the domain 
knowledge fulfil all requirements which the
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Figure 5: Knowledge Engineers view for rule creation. 

knowledge engineer needs to create the rules. 
Otherwise these elements must be added to the 
libraries (SystemUnitClassLibrary, 
RoleClassLibrary, InterfaceClassLibrary). Before 
starting to create rules, these libraries are searched 
for all possible elements. Only these elements can be 
chosen in the drop-down fields. This is shown in 
Figure 5 on the right side (5) where the attribute 
"TransportOperatorScreen" is chosen as part 
of the consequent (German: "Konklusion") of the 
rule. 

To keep the knowledge base decidable, only 
rules using existing individuals from the ontology in 
both body and head are used. These are so called 
"dl-safe-rules" (Staab and Studer, 2009). Based on 
an OWL DL ontology, a reasoner is able to infer 
new knowledge in a finite time. In INSA this allows 
to infer protection measures for given assets. For 
keeping our ontology decidable in this view we 
enabled our knowledge engineering component to 
add all used operators as object respectively data 
properties to our ontology. The object properties are 
used to point to existing individuals and the data 
properties point to the CAEX model using Literals. 

By the described system a GUI for the 
knowledge engineer was designed. This GUI is easy 
to learn and enables the knowledge engineer to 
create rules in short terms. In first tests knowledge 
engineers of the domain of security knowledge can 
use the GUI after half an hour of introduction. 
Depending on the complexity of the rule to create, 
they needed up to a few minutes to create it. 

Parts of the knowledge base had to be created 
using Protégé. After the implementation and usage 
of the GUI the experts found it easier and more 
comfortable to create new rules or find and edit 
existing rules. They needed up to 50% less time for 
the creation of new rules especially for complex 
rules. 

5 VALIDATION & CONCLUSION 

To validate our concepts we created a small 
ontology containing out of approximately 50 threats 
and protection measures represented in OWL and 20 
Rules given in SWRL. We applied this knowledge 
base to the CAEX Model representing the 
automation system shown in Figure 1 to identify the 
appropriate threats and protection measures for this 
automation system. In the result a security concept 
based on the knowledge base and the CAEX Model 
was generated in less than a second. We proofed, 
that basing on the given knowledge the security 
concept was generated correct. In a further step a 
much larger knowledge base with 200 threats and 
protection measures and nearly 400 rules was 
created by security experts. The much more complex 
security concepts generated with this knowledge 
base are currently reviewed by security experts to 
validate their correctness. 

Up to now we have shown a concept for 
connecting engineering data given in CAEX with 
security knowledge represented in OWL by using 
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SWRL rules with specific operators. Additionally 
we presented a user concept for an easy creation of 
these specific rules basing on the domain knowledge 
from the CAEX model. In addition to that we have 
shown a current implementation and the feasibility 
of main parts from the described concept.  

Intensive testing is performed to identify possible 
optimization potential. In a further step, we plan to 
extend our concept to other engineering tasks. It is 
also necessary to enable the GUI to access variable 
OWL ontologies as a basis for the implementation in 
other tools (for example the editor for 
AutomationML files). With such an implementation, 
engineers can easily create checks, supplements or 
manipulation to large CAEX files with just creating 
some rules. This supports the execution of extensive 
and error-prone tasks, making them more easy and 
manageable. 
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