information from the user’s interaction in order to
understand the user’s needs by offering them the
GUI. A user-centred, work-task oriented evaluation
process demonstrated the value of our technique by
comparing it to a traditional CBIR.
As for the prospects for future work, to evaluate
a method more qualitative than the SSIM should be
prepared. Next, the implementation of an on-line
version should test the feasibility and effectiveness
of our approach. Only experiments on large scale
data can verify our strategy. Additionally, a new
image similarity index should be prepared to
evaluate semantic matches.
REFERENCES
Arandjelović, R. & Zisserman, A., 2012. Three things
everyone should know to improve object retrieval.
Providence, RI, USA, s.n., pp. 2911-2918.
Azimi-Sadjadi, M. R., Salazar, J. & Srinivasan, S., 2009.
An Adaptable Image Retrieval System With
Relevance Feedback Using Kernel Machines and
Selective Sampling. IEEE Transactions on Image
Processing, 18(7), pp. 1645-1659.
Candan, S. K. & Li, W.-S., 2001. On Similarity Measures
for Multimedia Database Applications. Knowledge
and Information Systems, Volume 3, pp. 30-51.
Candes, E., Demanet, L., Donoho, D. & Ying, L., 2006.
Fast Discrete Curvelet Transforms, pp. l-44.: raport.
Chang, C.-C. & Wu, T.-C., 1995. An exact match retrieval
scheme based upon principal component analysis.
Pattern Recognition Letters, Volume 16, pp. 465-470.
Deng, J., Krause, J., Berg, A. & Fei-Fei, L., 2012.
Hedging Your Bets: Optimizing Accuracy-Specificity
Trade-offs in Large Scale Visual Recognition.
Providence, RI, USA, s.n., pp. 1-8.
Fayyad, U. M. & Irani, K. B., 1992. The attribute selection
problem in decision tree generation. s.l., s.n., pp. 104-
110.
Guru, D. S. & Punitha, P., 2004. An invariant scheme for
exact match retrieval of symbolic images based upon
principal component analysis. Pattern Recognition
Letters , Volume 25, pp. 73–86.
Ishibuchi, H. & Nojima, Y., June 27-39, 2011. Toward
Quantitative Definition of Explanation Ability of Fuzzy
Rule-Based Classifiers. Taipei, Taiwan, IEEE Society,
pp. 549-556.
Jaworska, T., 2007. Object extraction as a basic process
for content-based image retrieval (CBIR) system.
Opto-Electronics Review, Dec., 15(4), pp. 184-195.
Jaworska, T., 2008. Database as a Crucial Element for
CBIR Systems. Beijing, China, World Publishing
Corporation, pp. 1983-1986.
Jaworska, T., 2011. A Search-Engine Concept Based on
Multi-Feature Vectors and Spatial Relationship. In: H.
Christiansen, et al. eds. Flexible Query Answering
Systems. Ghent: Springer, pp. 137-148.
Jaworska, T., 2014. Application of Fuzzy Rule-Based
Classifier to CBIR in comparison with other
classifiers. Xiamen, China, IEEE, pp. 1-6.
Jaworska, T., 2014. Spatial representation of object
location for image matching in CBIR. In: A. Zgrzywa,
K. Choros & A. Sieminski, eds. New Research in
Multimedia and Internet Systems. Wroclaw: Springer,
pp. 25-34.
Lowe, D. G., 1999. Object Recognition from local scale-
invariant features. Corfu, Greece, s.n., pp. 1150-1157.
Lowe, D. G., 2004. Distinctive Image Features from
Scale-Invariant Keypoints. International Journal of
Computer Vision, 60(2), pp. 91-110.
Mikolajczyk, K. & Schmid, C., 2004. Scale & Affine
Invariant Interest Point Detectors. International
Journal of Computer Vision, pp. 63-86.
Rish, I., 2001. An empirical study of the naive Bayes
classifier. s.l., s.n., pp. 41-46.
Sharma, G. & Jurie, F., 2011. Learning discriminative
spatial representation for image classification.
Dundee, s.n., pp. 1-11.
Smeulders, A. W. M. et al., 2000. Content-Based Image
Retrieval at the End of the Early Years. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, Dec, 22(12), pp. 1349-1380.
Smith, J. R. & Chang, S.-F., 1999. Integrated spatial and
feature image query. Multimedia Systems, Issue 7,
pp. 129–140.
Tuytelaars, T. & Mikolajczyk, K., 2007. Local Invariant
Feature Detectors: A Survey. Computer Graphics and
Vision, 3(3), pp. 177–280.
Urban, J., Jose, J. M. & van Rijsbergen, C. J., 2006. An
adaptive technique for content-based image retrieval.
Multimedial Tools Applied, July, Issue 31, pp. 1-28.
Wang , Z., Bovik, A. C., Sheikh, H. R. & Simoncelli, E.
P., 2004. Image Qualifty Assessment: From Error
Visibility to Structural Similarity. IEEE Transactions
on Image Processing, April, 13(4), pp. 600–612.
Wang, T., Rui, Y. & Sun, J.-G., 2004. Constraint Based
Region Matching for Image Retrieval. International
Journal of Computer Vision, 56(1/2), pp. 37-45.
Xiao , B., Gao, X., Tao, D. & Li, X., 2011. Recognition of
Sketches in Photos. In: W. Lin, et al. eds. Multimedia
Analysis, Processing and Communications. Berlin:
Springer-Verlag, pp. 239-262.
Zhang, L., Wang, L. & Lin, W., 2012. Conjunctive
patches subspace learning with side information for
collaborative image retrieval. IEEE Transactions on
Image Processing, 21(8), pp. 3707-3720.
Zhang, Y.-J., Gao, Y. & Luo, Y., 2004. Object-Based
Techniques for Image Retrieval. In: S. Deb, ed.
Multimedia Systems and Content-Based Image
Retrieval. Hershey, London: IDEA Group Publishing,
pp. 156-181.