Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern
Classification. Wiley-Interscience, New York, 2 edi-
tion.
Gundecha, P. and Liu, H. (2012). Mining Social Media: A
Brief Introduction. Tutorials in Operations Research,
1(4).
Hadgu, A. T., Garimella, K., and Weber, I. (2013). Po-
litical Hashtag Hijacking in the U.S. In Proceed-
ings of the 22Nd International Conference on World
Wide Web Companion, WWW ’13 Companion, pages
55–56, Republic and Canton of Geneva, Switzerland.
International World Wide Web Conferences Steering
Committee.
Hoi, S., Jin, R., and Lyu, M. (2009). Batch Mode Active
Learning with Applications toText Categorization and
Image Retrieval. IEEE Transactions on Knowledge
and Data Engineering, 21(9):1233–1248.
Kim, B. S. and Park, S. B. (1986). A Fast k Nearest Neigh-
bor Finding Algorithm Based on the Ordered Parti-
tion. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, pages 761–766.
Li, X., Chen, H., Zhang, Z., and Li, J. (2007). Automatic
Patent Classification using Citation Network Infor-
mation: an Experimental Study in Nanotechnology.
In JCDL ’07: Proceedings of the 2007 Conference
on Digital libraries, pages 419–427, New York, NY,
USA. ACM.
Lin, W.-Y., Hu, Y.-H., and Tsai, C.-F. (2012). Machine
Learning in Financial Crisis Prediction: A Survey.
IEEE Transactions on Systems, Man, and Cybernet-
ics, Part C: Applications and Reviews, 42(4):421–436.
Lo, S. L., Chiong, R., and Cornforth, D. (2015). Using Sup-
port Vector Machine Ensembles for Target Audience
Classification on Twitter. Plos One, 10(4):1–20.
Malo, P., Sinha, A., Wallenius, J., and Korhonen, P.
(2011). Concept-Based Document Classification Us-
ing Wikipedia and Value Function. Journal of the
American Society for Information Science and Tech-
nology, pages 2496–2511.
Newman, D. J., Hettich, S., Blake, C. L., and Merz,
C. J. (1998). UCI Repository of Machine Learn-
ing Databases. http://www.ics.uci.edu/∼mlearn/
∼MLRepository.html.
Oliveira, E., Basoni, H. G., Sa´ude, M. R., and Ciarelli,
P. M. (2014). Combining Clustering and Classifi-
cation Approaches for Reducing the Effort of Auto-
matic Tweets Classification. In 6th International Joint
Conference on Knowledge Discovery, Knowledge En-
gineering and Knowledge Management, Rome, Italy.
IC3K.
Portal, S. T. S. (2015). Leading Social Networks Worldwide
as of March 2015, Ranked by Number of Active Users
(in millions).
Saito, P. T., de Rezende, P. J., Falco, A. X., Suzuki,
C. T., and Gomes, J. F. (2014). An Active Learn-
ing Paradigm Based on a Priori Data Reduction
and Organization. Expert System and Applications,
41(14):6086–6097.
Sebastiani, F. (2002). Machine Learning in Automated Text
Categorization. ACMComputing Surveys, 34(1):1–47.
Sriram, B., Fuhry, D., Demir, E., Ferhatosmanoglu, H., and
Demirbas, M. (2010). Short Text Classification in
Twitter to Improve Information Filtering. In 33rd In-
ternational ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’10,
pages 841–842, New York, NY, USA. ACM.
Vens, C., Verstrynge, B., and Blockeel, H. (2013). Semi-
supervised Clustering with Examples Cluster. 5th In-
ternational Conference on Knowledge Discovery and
Information Retrieval, pages 1–7.
Wolfsfeld, G., Segev, E., and Sheafer, T. (2013). Social Me-
dia and the Arab Spring: Politics Comes First. The In-
ternational Journal of Press/Politics, 18(2):115–137.
Zeng, H.-J., Wang, X.-H., Chen, Z., Lu, H., and Ma, W.-
Y. (2003). CBC: Clustering Based Text Classification
Requiring Minimal Labeled Data. Third IEEE Inter-
national Conference on Data Mining, pages 443–450.
Zhang, B. and Srihari, S. N. (2004). Fast k-Nearest Neigh-
bor Classification Using Cluster-Based Trees. IEEE
Trans. Pattern Anal. Mach. Intell., 26(4):525–528.