EasySDM - An Integrated and Easy to Use Spatial Data Mining Platform

Leila Hamdad, Amine Abdaoui, Nabila Belattar, Mohamed Al Chikha

2015

Abstract

Spatial Data Mining allows users to extract implicit but valuable knowledge from spatial related data. Two main approaches have been used in the literature. The first one applies simple Data Mining algorithms after a spatial pre-processing step. While the second one consists of developing specific algorithms that considers the spatial relations inside the mining process. In this work, we first present a study of existing Spatial Data Mining tools according to the implemented tasks and specific characteristics. Then, we illustrate a new open source Spatial Data Mining platform (EasySDM) that integrates both approaches (pre-processing and dynamic mining). It proposes a set of algorithms belonging to clustering, classification and association rule mining tasks. Moreover and more importantly, it allows geographic visualization of both the data and the results. Either via an internal map display or using any external Geographic Information System.

References

  1. Anselin, L., Syabri, I., Kho, Y., 2006. GeoDa: An Introduction to Spatial Data Analysis. Geographical Analysis 38, 5-22.
  2. Appice, A., Lanza, A., Malerba, D., 2007. An Integrated Platform for Spatial Data Mining Within a GIS Environment, in: ICDE Workshop on Spatio-Temporal Data Mining, pages 507-516. IEEE Computer Society.
  3. Bogorny, V., Palma, A.T., Engel, P., Alvares, L.O., 2006. Weka-gdpm: Integrating classical data mining toolkit to geographic information systems, in: SBBD Workshop on Data Mining Algorithms and Aplications, Florianopolis, Brasil, pp. 16-20.
  4. Goebel, M., Gruenwald, L., 1999. A Survey of Data Mining and Knowledge Discovery Software Tools. SIGKDD Explor. Newsl. 1, 20-33.
  5. Guo, D., 2008. Regionalization with Dynamically Constrained Agglomerative Clustering and Partitioning (REDCAP). Int. J. Geogr. Inf. Sci. 22, 801-823.
  6. Guo, D.,Mennis. J. 2009.Spatial data mining and geographic knowledge discovery-An introduction. Computers, Environment and Urban Systems. 33. 403- 408.
  7. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., 2009. The WEKA Data Mining Software: An Update. SIGKDD Explor. Newsl. 11, 10- 18.
  8. Han, J., Koperski, K., Stefanovic, N., 1997. GeoMiner: A System Prototype for Spatial Data Mining, in: Proceedings of the 1997 ACM SIGMOD International Conference on Management of Data, ACM, New York, NY, USA, pp. 553-556.
  9. Jiawei Han, Y.F., 1996. DBMiner: A System for Mining Knowledge in Large Relational Databases. KDD-96 Proceedings, 250-255.
  10. Elder .J. F., Abbott. D.W, 1998. A Comparison of Leading Data Mining Tools. Presented at the Fourth International Conference on Knowledge Discovery and Data Mining, New York.
  11. Lazarevic, A., Fiez, T., Obradovic, Z., 2000. A software system for spatial data analysis and modeling, in: Proceedings of the 33rd Annual Hawaii International Conference on System Sciences.
  12. Levine, N., others, 2004. CrimeStat III: a spatial statistics program for the analysis of crime incident locations (version 3.0). Houston (TX): Ned Levine & Associates/Washington, DC: National Institute of Justice.
  13. May, M., Savinov, R., 2001. An Architecture for the SPIN! Spatial Data Mining Platform, in: Proc. New Techniques and Technologies for Statistics. pp. 467- 472.
  14. Miller, H.J., 2004. Tobler's First Law and Spatial Analysis. Annals of the Association of American Geographers 94, 284-289.
  15. Ouattara, M., 2010. Fouille de données: vers une nouvelle approche intégrant de façon cohérente et transparente la composante spatiale. Université Laval.
  16. Rinzivillo.S, Turini. F,Bogorny. V, Körner. C, Kuijpers. B, andMay, M. 2008. Knowledge discovery from geographical data. Mobility, Data Mining and Privacy, pp. 243-265,
  17. Witten, I.H., Frank, E., 2005. Data Mining: Practical Machine Learning Tools and Techniques, Second Edition. ed. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.
Download


Paper Citation


in Harvard Style

Hamdad L., Abdaoui A., Belattar N. and Al Chikha M. (2015). EasySDM - An Integrated and Easy to Use Spatial Data Mining Platform . In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015) ISBN 978-989-758-158-8, pages 394-401. DOI: 10.5220/0005615903940401


in Bibtex Style

@conference{kdir15,
author={Leila Hamdad and Amine Abdaoui and Nabila Belattar and Mohamed Al Chikha},
title={EasySDM - An Integrated and Easy to Use Spatial Data Mining Platform},
booktitle={Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015)},
year={2015},
pages={394-401},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005615903940401},
isbn={978-989-758-158-8},
}


in EndNote Style

TY - CONF
JO - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: KDIR, (IC3K 2015)
TI - EasySDM - An Integrated and Easy to Use Spatial Data Mining Platform
SN - 978-989-758-158-8
AU - Hamdad L.
AU - Abdaoui A.
AU - Belattar N.
AU - Al Chikha M.
PY - 2015
SP - 394
EP - 401
DO - 10.5220/0005615903940401