The Predictor Impact of Web Search Media on Bitcoin Trading Volumes
Martina Matta, Ilaria Lunesu, Michele Marchesi
2015
Abstract
In the last decade, Web 2.0 services have been widely used as communication media. Due to the huge amount of available information, searching has become dominant in the use of Internet. Millions of users daily interact with search engines, producing valuable sources of interesting data regarding several aspects of the world. Search queries prove to be a useful source of information in financial applications, where the frequency of searches of terms related to the digital currency can be a good measure of interest in it. Bitcoin, a decentralized electronic currency, represents a radical change in financial systems, attracting a large number of users and a lot of media attention. In this work we studied the existing relationship between Bitcoin’s trading volumes and the queries volumes of Google search engine. We achieved significant cross correlation values, demonstrating search volumes power to anticipate trading volumes of Bitcoin currency.
References
- Bollen, J., Mao, H., and Zeng, X. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 2(1):1-8.
- Bordino, I., Battiston, S., Caldarelli, G., Cristelli, M., Ukkonen, A., and Weber, I. (2012). Web search queries can predict stock market volumes. PloS one, 7(7):e40014.
- Choi, H. and Varian, H. (2012). Predicting the present with google trends. Economic Record, 88(s1):2-9.
- Constantinides, E., Romero, C. L., and Boria, M. A. G. (2009). Social media: a new frontier for retailers? In European Retail Research, pages 1-28. Springer.
- Garcia, D., Tessone, C. J., Mavrodiev, P., and Perony, N. (2014). The digital traces of bubbles: feedback cycles between socio-economic signals in the bitcoin economy. Journal of the Royal Society Interface, 11(99):20140623.
- Ginsberg, J., Mohebbi, M. H., Patel, R. S., Brammer, L., Smolinski, M. S., and Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012-1014.
- Granger, C. W. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica: Journal of the Econometric Society, pages 424-438.
- Grinberg, R. (2012). Bitcoin: an innovative alternative digital currency. Hastings Sci. & Tech. LJ, 4:159.
- Hansen, D., Shneiderman, B., and Smith, M. A. (2010). Analyzing social media networks with NodeXL: Insights from a connected world. Morgan Kaufmann.
- Kaminski, J. and Gloor, P. (2014). Nowcasting the bitcoin market with twitter signals. arXiv preprint arXiv:1406.7577.
- Kaplan, A. M. and Haenlein, M. (2010). Users of the world, unite! the challenges and opportunities of social media. Business horizons, 53(1):59-68.
- Kristoufek, L. (2013). Bitcoin meets google trends and wikipedia: Quantifying the relationship between phenomena of the internet era. Scientific reports , 3.
- Mai, F., Bai, Q., Shan, Z., Wang, X. S., and Chiang, R. H. (2015). From bitcoin to big coin: The impacts of social media on bitcoin performance.
- Matta, M., Lunesu, I., and Marchesi, M. (2015). Bitcoin spread prediction using social and web search media. Proceedings of DeCAT.
- Mittal, A. and Goel, A. (2012). Stock prediction using twitter sentiment analysis. Standford University, CS229.
- Mondria, J., Wu, T., and Zhang, Y. (2010). The determinants of international investment and attention allocation: Using internet search query data. Journal of International Economics, 82(1):85-95.
- Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Consulted, 1(2012):28.
- Preis, T., Reith, D., and Stanley, H. E. (2010). Complex dynamics of our economic life on different scales: insights from search engine query data. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, 368(1933):5707-5719.
- Rao, T. and Srivastava, S. (2012). Analyzing stock market movements using twitter sentiment analysis. In Proceedings of the 2012 International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2012), pages 119-123. IEEE Computer Society.
- Ron, D. and Shamir, A. (2013). Quantitative analysis of the full bitcoin transaction graph. In Financial Cryptography and Data Security, pages 6-24. Springer.
- Rose, D. E. and Levinson, D. (2004). Understanding user goals in web search. In Proceedings of the 13th international conference on World Wide Web, pages 13-19. ACM.
Paper Citation
in Harvard Style
Matta M., Lunesu I. and Marchesi M. (2015). The Predictor Impact of Web Search Media on Bitcoin Trading Volumes . In Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: DART, (IC3K 2015) ISBN 978-989-758-158-8, pages 620-626. DOI: 10.5220/0005618606200626
in Bibtex Style
@conference{dart15,
author={Martina Matta and Ilaria Lunesu and Michele Marchesi},
title={The Predictor Impact of Web Search Media on Bitcoin Trading Volumes},
booktitle={Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: DART, (IC3K 2015)},
year={2015},
pages={620-626},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0005618606200626},
isbn={978-989-758-158-8},
}
in EndNote Style
TY - CONF
JO - Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 1: DART, (IC3K 2015)
TI - The Predictor Impact of Web Search Media on Bitcoin Trading Volumes
SN - 978-989-758-158-8
AU - Matta M.
AU - Lunesu I.
AU - Marchesi M.
PY - 2015
SP - 620
EP - 626
DO - 10.5220/0005618606200626