Cant
´
u-Paz, E. (1998). A survey of parallel genetic algo-
rithms. Calculateurs paralleles, reseaux et systems
repartis, 10(2):141–171.
Cotta, C., Sevaux, M., and S
¨
orensen, K., editors (2008).
Adaptive and Multilevel Metaheuristics, volume 136
of Studies in Computational Intelligence. Springer.
Eiben, A. (2005). Evolutionary computing and autonomic
computing: Shared problems, shared solutions? In
(Babaoglu et al., 2005), pages 36–48.
Frei, R., McWilliam, R., Derrick, B., Purvis, A., Tiwari, A.,
and Di Marzo Serugendo, G. (2013). Self-healing and
self-repairing technologies. International Journal of
Advanced Manufacturing Technology, 69(5-8):1033–
1061.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Op-
timization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., 1st edition.
Gonz
´
alez Lombra
˜
na, D., Laredo, J. L. J., Fern
´
andez de
Vega, F., and Merelo Guerv
´
os, J. J. (2010). Character-
izing fault-tolerance of genetic algorithms in desktop
grid systems. In Evolutionary Computation in Combi-
natorial Optimization, pages 131–142. Springer.
Gonzalez-Pardo, A. and Camacho, D. (2015). Solving
project scheduling problems through swarm-based ap-
proaches. International Journal of BioInspired Com-
putation (IJBIC), In press.
Haider, P., Chiarandini, L., and Brefeld, U. (2012). Dis-
criminative clustering for market segmentation. In
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data min-
ing, KDD ’12, pages 417–425, New York, NY, USA.
ACM.
Han, J. and Kamber, M. (2006). Data mining: concepts and
techniques. Morgan Kaufmann.
Huhns, M. N. and Singh, M. P. (2005). Service-oriented
computing: Key concepts and principles. Internet
Computing, IEEE, 9(1):75–81.
Kaisler, S., Armour, F., Espinosa, J. A., and Money, W.
(2013). Big data: Issues and challenges moving for-
ward. In System Sciences (HICSS), 2013 46th Hawaii
International Conference on, pages 995–1004. IEEE.
Kamil, S., Shalf, J., Oliker, L., and Skinner, D. (2005).
Understanding ultra-scale application communication
requirements. In Workload Characterization Sympo-
sium, 2005. Proceedings of the IEEE International,
pages 178–187. IEEE.
Laredo, J. L. J., Castillo, P. A., Mora, A. M., Merelo, J. J.,
and Fernandes, C. (2008). Resilience to churn of a
peer-to-peer evolutionary algorithm. Int. J. High Per-
formance Systems Architecture, 1(4):260–268.
Lohr, S. (2012). The age of big data. New York Times, 11
February. [Online; accessed 5-September-2014].
Lyytinen, K. and Yoo, Y. (2002). Ubiquitous computing.
Communications of the ACM, 45(12):63–96.
Manovich, L. (2011). Trending: the promises and the chal-
lenges of big social data. Debates in the digital hu-
manities, pages 460–475.
Men
´
endez, H. D., Barrero, D. F., and Camacho, D. (2014a).
A genetic graph-based approach for partitional clus-
tering. International journal of neural systems,
24(03).
Men
´
endez, H. D., Otero, F. E., and Camacho, D. (2014b).
Macoc: a medoid-based aco clustering algorithm. In
Swarm Intelligence, pages 122–133. Springer Interna-
tional Publishing.
Network for Sustainable Ultrascale Computing (2014). The
future of ultrascale computing under study. [Online;
accessed 8-September-2014].
Nogueras, R. and Cotta, C. (2015a). Studying fault-
tolerance in island-based evolutionary and multi-
memetic algorithms. Journal of Grid Computing.
doi:10.1007/s10723-014-9315-6 [online].
Nogueras, R. and Cotta, C. (2015b). Studying self-
balancing strategies in island-based multimemetic al-
gorithms. Journal of Computational and Applied
Mathematics. doi:10.1016/j.cam.2015.03.047 [on-
line].
Nogueras, R. and Cotta, C. (2015c). Towards resilient mul-
timemetic systems on unstable networks with com-
plex topology. In Papa, G., editor, Advances in Evo-
lutionary Algorithm Research. Nova Science Pub. In
Press.
Pascual, A., Barc
´
ena, M., Merelo, J., and Carazo, J.-M.
(1999). Application of the fuzzy kohonen clustering
network to biological macromolecules images clas-
sification. In Mira, J. and S
´
anchez-Andr
´
es, J., edi-
tors, Engineering Applications of Bio-Inspired Artifi-
cial Neural Networks, volume 1607 of Lecture Notes
in Computer Science, pages 331–340. Springer Berlin
Heidelberg.
Sarmenta, L. F. and Hirano, S. (1999). Bayanihan: Build-
ing and studying web-based volunteer computing sys-
tems using java. Future Generation Computer Sys-
tems, 15(5):675–686.
Sharmin, M., Ahmed, S., and Ahamed, S. I. (2005). Safe-
rd (secure, adaptive, fault tolerant, and efficient re-
source discovery) in pervasive computing environ-
ments. In Information Technology: Coding and Com-
puting, 2005. ITCC 2005. International Conference
on, volume 2, pages 271–276. IEEE.
Stutzbach, D. and Rejaie, R. (2006). Understanding churn
in peer-to-peer networks. In Proceedings of the 6th
ACM SIGCOMM Conference on Internet Measure-
ment, IMC ’06, pages 189–202, New York, NY, USA.
ACM.
Wang, B., Bodily, J., and Gupta, S. K. (2004). Supporting
persistent social groups in ubiquitous computing en-
vironments using context-aware ephemeral group ser-
vice. In Pervasive Computing and Communications,
2004. PerCom 2004. Proceedings of the Second IEEE
Annual Conference on, pages 287–296. IEEE.
ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications
324