In the future work we can use the obtained results,
for example, for development of heterogenous parti-
cle swarm optimizers. The idea of swarms where par-
ticles may vary its behaviour during the process of
search can be found in the literature (see, e.g, (Engel-
brecht, 2010; Li and Yang, 2010; Nepomuceno and
Engelbrecht, 2013a; Nepomuceno and Engelbrecht,
2013b)). Now, using the measure presented in this
paper it can be easier to identify requested particle
properties and develop strategies of particle configu-
ration adaptation respectively to the search progress
and current state of particles in a swarm.
REFERENCES
Bonyadi, M. R. and Michalewicz, Z. (2015). Analysis of
stability, local convergence, and transformation sensi-
tivity of a variant of particle swarm optimization algo-
rithm. IEEE T. Evolut. Comput. Date of Publication:
July 25, 2015.
Cleghorn, C. W. and Engelbrecht, A. P. (2014a). A gener-
alized theoretical deterministic particle swarm model.
Swarm Intelligence, 8(1):35–59.
Cleghorn, C. W. and Engelbrecht, A. P. (2014b). Par-
ticle swarm convergence: An empirical investiga-
tion. In Evolutionary Computation (CEC), 2014 IEEE
Congress on, pages 2524 – 2530. IEEE Press.
Clerc, M. and Kennedy, J. (2002). The particle swarm-
explosion, stability, and convergence in a multidi-
mensional complex space. IEEE T. Evolut. Comput.,
6(1):58–73.
Eberhart, R. C. and Shi, Y. (2000). Comparing inertia
weights and constriction factors in particle swarm op-
timization. In Proc. of the 2000 Congress on Evo-
lutionary Computation, pages 84–88, Piscataway, NJ.
IEEE Service Center.
Engelbrecht, A. P. (2010). Heterogeneous particle swarm
optimization. In Swarm Intelligence, volume 6234 of
Lecture Notes in Computer Science, pages 191–202.
Springer Berlin Heidelberg.
Gazi, V. (2012). Stochastic stability analysis of the particle
dynamics in the pso algorithm. In Intelligent Control
(ISIC), 2012 IEEE International Symposium on, pages
708 – 713. IEEE Press.
Kadirkamanathan, V., Selvarajah, K., and Fleming, P. J.
(2006). Stability analysis of the particle dynamics in
particle swarm optimizer. IEEE T. Evolut. Comput.,
10(3):245–255.
Kennedy, J. and Eberhart, R. C. (1995). Particle swarm op-
timization. In Proc. of the IEEE Int. Conf. on Neural
Networks, pages 1942–1948, Piscataway, NJ. IEEE.
Li, C. and Yang, S. (2010). Adaptive learning particle
swarm optimizer-II for global optimization. In IEEE
Congress on Evolutionary Computation, pages 1–8.
IEEE.
Liu, Q. (2015). Order-2 stability analysis of particle swarm
optimization. Evol. Comput., 23(2):187–216.
Nepomuceno, F. V. and Engelbrecht, A. P. (2013a). Be-
havior changing schedules for heterogeneous parti-
cle swarms. In Computational Intelligence and 11th
Brazilian Congress on Computational Intelligence,
2013 BRICS Congress on, pages 112 – 118. IEEE
Press.
Nepomuceno, F. V. and Engelbrecht, A. P. (2013b). A self-
adaptive heterogeneous PSO for real-parameter opti-
mization. In 2013 IEEE Conference on Evolutionary
Computation, volume 1, pages 361–368.
Poli, R. (2009). Mean and variance of the sampling distri-
bution of particle swarm optimizers during stagnation.
IEEE T. Evolut. Comput., 13(4):712–721.
Shi, Y. and Eberhart, R. C. (1998). A modified parti-
cle swarm optimizer. In Proceedings of the IEEE
Congress on Evolutionary Computation 1998, pages
69–73. IEEE Press.
Trelea, I. C. (2003). The particle swarm optimization algo-
rithm: convergence analysis and parameter selection.
Inform. Process. Lett., 85(6):317 – 325.
van den Bergh, F. and Engelbrecht, A. P. (2006). A study of
particle swarm optimization particle trajectories. In-
form. Sciences, 176(8):937–971.
ECTA 2015 - 7th International Conference on Evolutionary Computation Theory and Applications
130