the prioritization rules, this graph is linearized in
analogous reverse search manner, yielding the final
σ. This reasoning process can either be applied a-
priori in order to provide and deploy fully qualified
M or it can be performed on-demand. Hence,
dynamics of the plant model can be met
appropriately. In conjunction with diagnostics, this
also permits the automatic generation of bypass
solutions for σ. In addition, other scenarios based on
sequences of actions can be handled with this
approach as well.
6 CONCLUSION AND OUTLOOK
Although it appears to be a simple task at first
glance, a thorough examination of “standby” in an
industrial context requires broader consideration
beyond the original focus on energy efficiency.
Switching industrial plants to energy states during
non-productive times requires that consideration of
many details that extend into different adjacent
domains. This requires systematic and integrated
knowledge management that combines disparate
knowledge artefacts across the entire plant lifecycle.
This paper has highlighted aspects of knowledge
engineering significant for the enabling of
comprehensive advanced standby control (SC). In
addition, it presented an approach to the flexible,
automated provision of the necessary energy state
models and switching paths. Future work will
address the evolution of the tools and components
involved in plant automation, with the goal of
offering advanced SC as an integrated feature. Also,
in light of the evolving general frameworks, the
implications of advanced SC as a dedicated tool
must be evaluated in the contexts of predictive
maintenance and reliability-centered maintenance so
that its potential can be classified.
REFERENCES
Allen, J.F., 1983. Maintaining Knowledge about Temporal
Intervals. Communications of the ACM, 26(11),
pp.832–843.
BMWi, 2014. The Energy of the Future - First “Energy
Transition” Progress Report -Summary, Berlin: The
Federal Ministry for Economic Affairs and Energy
(BMWi).
Böde, U., Bradke, H., Cremer, C., 2000. Detaillierung des
Stromverbrauchs privater Haushalte in der
Bundesrepublik Deutschland 1997 - 2010, Karlsruhe:
Fraunhofer-Institut für Systemtechnik und
Innovationsforschung -ISI-.
Brecher, C., Feng, J., Özdemir, D., Fayzullin, K., Herfs,
W., Müller, A., Hamadou, M., 2010. Automatische
Generierung von Arbeitsabläufen. Zeitschrift für
wirtschaftlichen Fabrikbetrieb (ZWF), (12/2010),
pp.1084–1090.
Bründl, A., Deutsch, N., Bornholdt, M., Ruhbaum, C.,
2015. Branchenmonitor Energieeffizienz 2015, Berlin:
Deutsche Unternehmensinitiative Energieeffizienz
e.V. (DENEFF).
Hübner, I., 2011. Erkenntnisse der Profienergy-Studie.
openautomation, 3/11.
IEA, 2007. Tracking Industrial Energy Efficiency and
CO2 Emissions, Paris: International Energy Agency.
IO-Link Community, 2013. IO-Link Interface and System
Specification V1.1.2.
Mechs, S.G., 2013. Model-based Engineering for Energy-
efficient Operation of Factory Automation Systems
Within Non-productive Phases, Shaker.
Mobley, R.K., 2002. An Introduction to Predictive
Maintenance, Butterworth Heinemann.
Moubray, J., 1997. Reliability-Centered Maintenance
Second Edition 2 Revised edition., New York, NY:
Industrial Press, Inc.
PNO, 2013. Common Application Profile PROFIenergy -
Technical Specification for PROFINET V1.1 Ed. 2,
PROFIBUS Nutzerorganisation e.V.
PNO, 2015. Diagnosis for PROFINET IO V1.1,
PROFIBUS Nutzerorganisation e.V.
Sauer, O., 2010. Trends in Manufacturing Execution
Systems. In Proceedings of the 6th CIRP-Sponsored
International Conference on Digital Enterprise
Technology. Springer Berlin Heidelberg, pp. 685–693.
Schlechtendahl, J., 2012. Whitepaper sercos ENERGY,
sercos International e.V.
Schlechtendahl, J., Eberspächer, P., Haag, H., Verl, A.,
Westkämper, E., 2013. Framework for Controlling
Energy Consumption of Machine Tools. In P.
Golinska, ed. EcoProduction and Logistics.
EcoProduction. Springer Berlin Heidelberg, pp. 155–
168.
Schlechtendahl, J., Sommer, P., Eberspächer, P., Verl, A.,
2012. Automated Linkage of Consumption Models
and Control Information in Control Systems. In D. A.
Dornfeld & B. S. Linke, eds. Leveraging Technology
for a Sustainable World. Springer Berlin Heidelberg,
pp. 387–391.
Schöfberger, W., Blumauer, G., Bachl, M., Traxler, R.,
Petzl, B., Leutgöb, M., Kolic, P., Bergthaler, F.,
Bäuchler, W., Aschauer, S., Grill, H., Reisinger, B.,
Preinfalk, S., 2010. Abschaltbare Fabrik: Zentrale
Leittechnik und Gesamtkonzept zu Energie-
einsparungen und zur Ressourcenoptimierung im
Standby Betrieb von Industrieanlagen, Linz, Austria.
sercos, 2011. sercos Energy Profile V1.3.1-1.1, sercos
International e.V.
Wolff, D., Hundt, L., Dreher, S., 2013. Requirements on
the engineering of advanced standby strategies in
automobile production. In Proceedings of the 11th
Global Conference on Sustainable Manufacturing.