REFERENCES
Berry, M. W., Brown, M., Langville, A. N., Pauca, V. P.,
and Plemmons, R. J. (2007). Algorithms and ap-
plications for approximate nonnegative matrix factor-
ization. Computational Statistics & Data Analysis,
52(1):155–173.
Brunet, J. P., Tamayo, P., Golub, T. R., and Mesirov, J. P.
(2004). Metagenes and molecular pattern discovery
using matrix factorization. Proceedings of the Na-
tional Academy of Sciences, 101(12):4164–4169.
Cai, J., Cand`es, E. J., and Shen, Z. (2010). A singular value
thresholding algorithm for matrix completion. SIAM
Journal on Optimization, 20(4):1956–1982.
Chen, S., Cowan, C. F., and Grant, P. M. (1991). Orthog-
onal least squares learning algorithm for radial basis
function networks. IEEE Transactions on Neural Net-
works, 2(2):302–309.
Cybenko, G. (1989). Approximation by superpositions of
a sigmoidal function. Mathematics of control, signals
and systems, 2(4):303–314.
Gashler, M. S. and Ashmore, S. C. (2014). Training deep
fourier neural networks to fit time-series data. Lecture
Notes in Bioinformatics, 8590:48–55.
Godfrey, L. B. and Gashler, M. S. (2015). Neural decompo-
sition of time-series data for effective generalization.
Publication Pending.
Kalman, B. L. and Kwasny, S. C. (1992). Why tanh: choos-
ing a sigmoidal function. In Neural Networks, 1992.
IJCNN., International Joint Conference on, volume 4,
pages 578–581. IEEE.
Koren, Y., Bell, R., and Volinsky, C. (2009). Matrix factor-
ization techniques for recommender systems. Com-
puter, 42(8):30–37.
Nair, V. and Hinton, G. E. (2010). Rectified linear units
improve restricted boltzmann machines. In Proceed-
ings of the 27th International Conference on Machine
Learning (ICML-10), pages 807–814.
Qasem, S. N. and Shamsuddin, S. M. (2011). Radial
basis function network based on time variant multi-
objective particle swarm optimization for medical dis-
eases diagnosis. Applied Soft Computing, 11(1):1427–
1438.
Sch¨olkopf, B., Sung, K.-K., Burges, C. J., Girosi, F.,
Niyogi, P., Poggio, T., and Vapnik, V. (1997). Com-
paring support vector machines with gaussian kernels
to radial basis function classifiers. Signal Processing,
IEEE Transactions on, 45(11):2758–2765.
Silvescu, A. (1999). Fourier neural networks. In Neural
Networks, 1999. IJCNN’99. International Joint Con-
ference on, volume 1, pages 488–491. IEEE.
Tan, H. (2006). Fourier neural networks and generalized
single hidden layer networks in aircraft engine fault
diagnostics. Journal of engineering for gas turbines
and power, 128(4):773–782.
Xu, W., Liu, X., and Gong, Y. (2003). Document clustering
based on non-negative matrix factorization. In Pro-
ceedings of the 26th annual international ACM SIGIR
conference on Research and development in informa-
tion retrieval, pages 267–273. ACM.
Zeiler, M. D., Ranzato, M., Monga, R., Mao, M., Yang,
K., Le, Q. V., Nguyen, P., Senior, A., Vanhoucke, V.,
Dean, J., et al. (2013). On rectified linear units for
speech processing. In Acoustics, Speech and Signal
Processing (ICASSP), 2013 IEEE International Con-
ference on, pages 3517–3521. IEEE.
Zuo, W., Zhu, Y., and Cai, L. (2009). Fourier-neural-
network-based learning control for a class of nonlinear
systems with flexible components. Neural Networks,
IEEE Transactions on, 20(1):139–151.