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1 OBJECTIVES 

Neurons as a main building block of the brain have 
enormous computational capacity. Therefore, the 
development of mathematical models of spiking 
neurons and neural networks on their basis is a 
promising approach for applied computations 
(Paugam-Moisy and Bohte, 2009). However, the 
number of successful attempts of technical 
implementations remains very limited. Recent 
studies have shown that networks of spiking neurons 
can be used for recognition of patterns of different 
origin (Bichler et al., 2011; Loiselle et al., 2005; 
Kasabov et al., 2012). 

In this work we report two successful studies of 
spiking neural networks. In the first case we use a 
toy robot, a crocodile, driven by a neural network in-
silico. We show that this so-called neuroanimat is 
capable of detecting internal events of 
synchronization of network responses to stimuli. In 
the second example we employ a spiking neural 
network for building a human-robot interface. Using 
a bracelet with eight electromyographic sensors we 
classify hand gestures in real time and use them to 
control a mobile robot.  

2 METHODS 

2.1 Neuroanimat 

We developed a neuro-simulator, called NeuroNet, 
which models a network of 400 excitatory and 100 
inhibitory Izhikevich-type neurons (Izhikevich, 
2004). Topologically the neurons are distributed 
over nodes in a 2D graph whose edges correspond to 
couplings between cells. Then, the time delay in 
spike transmission between neurons is proportional 
to the distance between the corresponding nodes. 
Each neuron receives about 30 afferent couplings. 
The coupling probability decreased with the distance 

between neurons. 
The model simulates two types of synaptic 

plasticity. The short-term plasticity (facilitation and 
depression) is implemented by varying the 
transmitter release according to the frequency of 
presynaptic spikes (Tsodyks et al., 1998). The long-
term potentiation is based on spike-timing dependent 
plasticity (STDP) (Morrison et al., 2008). If a 
postsynaptic spike follows a presynaptic spike then 
the coupling strength increases. In the case of 
inverse spike timings the coupling strength reduces. 

An ultrasonic distance sensor placed on the robot 
head provides sensory information to the neural 
network. The sensor modulates the frequency of 
square pulses produced by a virtual generator. The 
output of this generator is fed to an arbitrary part of 
the network. Finally, the network output controls the 
robot movements. 

2.2 Human-robot Interface 

We developed a hardware-software complex, called 
MyoClass, for real time recording of EMG signals 
and recognition of hand gestures for controlling a 
mobile robot. The recording is accomplished by a 
bracelet MYO™ Thalmic providing simultaneously 
eight sEMG signals from the sensors (embedded 
MYO Thalmic gesture recognition was off). We 
used nine static hand gestures as motor patterns. 
During an experiment users performed four series of 
nine gestures each, selected in random order.  

For extraction of the discriminating features 
from sEMG signals we employed the same neuronal 
model as in the neuroanimat approach. The network 
output was connected to a multilayer artificial neural 
network for the feature classification. The standard 
error backpropagation algorithm was used for 
learning.  

2.3 Robot Platforms 

Both robot platforms for the animat (a crocodile) 
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and for testing the human-robot interface (a car) 
were built from a LEGO kit NXT Mindstorms ®. 
Communication between all parts has been 
implemented through a Bluetooth® interface. 

3 RESULTS 

3.1 Neuroanimat: Basic Behaviours 

We first checked that the neural network in-silico 
could exhibit all basic properties of an in-vitro 
neuronal culture such as bursting activity (Wagenaar 
et al., 2006) and plasticity provoked by external 
stimuli (Pimashkin et al., 2013). Adaptive structural 
changes in the network are related to long-term 
potentiation of the coupling weights. We found that 
such changes can lead to new emerging functional 
properties, i.e. to synchronization of the network 
firing with external stimuli. 

We revealed two criteria working at the low 
neuron level that allow distinguishing between 
synchronous and asynchronous network activities:  
a. High frequency (> 8-11 Hz) spiking of neurons; 
b. Stable phase lag (about 60-70 ms) of fired spikes 
related to the stimulus onset. 

To combine both criteria we proposed a neural 
circuit that includes phase and frequency neuronal 
filters coupled in series. Then, the filter output 
passes through a neuron-detector, which fires spikes 
in case of synchronization of the network activity 
with the stimulus. 

The phase filter employs axonal delays in two 
inhibitory neurons included between the stimulated 
part of the network and the neuron-detector. The 
first neuron receives input through the geometrically 
shortest path and thus suppresses excitatory spikes in 
the time range [20-60] ms after the stimulus onset. 
The second neuron placed at a distance from the 
detector suppresses the excitation in the range [70-
120] ms. Thus, these neurons strongly inhibit all 
spikes at the detector except those falling into the 
range [60-70] ms.  

The frequency filter relies on the effect of 
presynaptic facilitation in the framework of short-
term synaptic plasticity. The filter parameters have 
been tuned in such a way that the amount of 
neurotransmitter release increased for series of 
presynaptic spikes coming at rates higher than 8 Hz. 
Thus, the output spikes are generated for high 
frequency activity of the presynaptic neuron only.  

Spontaneous activity in the neural network 
eventually leads to an arbitrary movement of the 
robot. Then, in case of the presence of an object in 

the sensory field of the robot, its sensory system 
generates an output that innervates the neural 
network. This in turn may lead to a strong increase 
of the motor activity. The combination of 
spontaneous and evoked activities in the neural 
network may lead to the behaviour of searching for a 
target. Even in the absence of any object in the 
immediate neighbourhood, the animat from time to 
time begins moving and “looking” for objects or 
walls in the room.  

In case of event synchronization we observed 
“eating” behaviour (Fig. 1). At high frequency 
synchronization neuronal spikes pass the phase and 
frequency filters, which leads to activation of moto-
neurons driving quick opening and closing of the 
jaws. 

 

 

Figure 1: “Eating” behaviour based on synchronization 
phenomenon in the animat. Left and right columns 
correspond to before and after learning, respectively. The 
output from the ultrasonic sensor (s) provokes 
synchronization (red circled) of neurons in the main 
network (n is a representative neuron). This in turn leads 
to activation of the phase filter neuron (d1) and later of the 
frequency filter neuron (d2) and the animat opens the 
jaws. 

3.2 Spiking Neurons in Human-robot 
Interface 

The myographic bracelet provides simultaneously 
eight sEMG signals. Then, the purpose of the neural 
network is to extract the most discriminative features 
from these signals in such a way that the artificial 
neural network could easily classify them according 
to the gestures made by hand. 

Spiking neurons, acting as sensory neurons, 
receive myographic signals from the bracelet and 
produce some output spikes. We consider the output 



 

synaptic signal evaluated in the framework of the 
Tsodycs-Markram model as continuously changing 
feature. Then, we can sample this variable at discrete 
time instants. 

Figure 2 shows a representative example of an 
sEMG signal (top), the transmembrane potential of 
the spiking sensory neuron (middle) and its output 
(bottom). During experiments we tuned the 
parameters of spiking neurons to ensure high 
accuracy of the classifier, comparable with the use 
of classic sEMG feature as the root mean square 
value. For ten subjects (25-56 years old) the 
classifier accuracy was 92.3±4.2%. 
 

 

Figure 2: A representative example of processing of an 
EMG signal by a spiking sensory neuron.  

We then tested the human-robot interface in real 
time. The user controlled the mobile robot using 
hand gestures. Every recognized gesture (except 
“rest”) was associated with an instruction of 
movement of the robot: “drive”, “reverse”, “forward 
right”, “forward left”, “reverse right”, “reverse left”, 
“stop”, and “fire”. Our results show that all users 
after 3-10 trials managed to control fluently the 
robot. 

4 DISCUSSION 

In this work we reported two successful cases of 
developing neural networks of spiking neurons for 
controlling mobile robots. In the first case the neural 
network works autonomously as a “brain” of an 
animat. We have shown that it is able to learn from 
the environment and to reproduce basic behaviour of 
advancing towards an object and “eating”. In the 
second case the neural network has been used as a 
processor for human-robot interface. We have 
shown that the interface can faithfully detect 

myographic signals, classify them according to hand 
gestures, and send the corresponding commands to 
the robot.  

Although the two applications belong to 
different areas of the Control Theory and applied 
Neuroscience, they are based on a common 
approach of neural computations. We note that in 
both cases besides neural networks there are no 
additional external algorithms for the decision-
making. 
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