REFERENCES
Agirre, E., Banea, C., et al. (2015). Semeval-2015 task 2:
Semantic textual similarity, english, s-panish and pi-
lot on interpretability. In Proceedings of the 9th Inter-
national Workshop on Semantic Evaluation (SemEval
2015), June.
Androutsopoulos, I. and Malakasiotis, P. (2010). A survey
of paraphrasing and textual entailment methods. Jour-
nal of Artificial Intelligence Research, pages 135–187.
Bentivogli, L., Clark, P., Dagan, I., Dang, H., and Giampic-
colo, D. (2011). The seventh pascal recognizing tex-
tual entailment challenge. Proceedings of TAC, 2011.
Bjerva, J., Bos, J., van der Goot, R., and Nissim, M. (2014).
The meaning factory: Formal semantics for recogniz-
ing textual entailment and determining semantic sim-
ilarity. SemEval 2014, page 642.
Burrows, S., Gurevych, I., and Stein, B. (2015). The eras
and trends of automatic short answer grading. Interna-
tional Journal of Artificial Intelligence in Education,
25(1):60–117.
Clark, Fellbaum, H. (2006). The Boeing-Princeton-
ISI (BPI) textual entailment test suite.
http://www.cs.utexas.edu/ pclark/bpi-test-suite/.
de Salvo Braz, R., Girju, R., Punyakanok, V., Roth, D.,
and Sammons, M. (2006). An inference model for
semantic entailment in natural language. In Machine
Learning Challenges. Evaluating Predictive Uncer-
tainty, Visual Object Classification, and Recognising
Tectual Entailment, pages 261–286. Springer.
Dzikovska, M. O., Nielsen, R. D., and Brew, C. (2012). To-
wards effective tutorial feedback for explanation ques-
tions: A dataset and baselines. In Proceedings of the
2012 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 200–210. Associ-
ation for Computational Linguistics.
Dzikovska, M. O., Nielsen, R. D., Brew, C., Leacock, C.,
Giampiccolo, D., Bentivogli, L., Clark, P., Dagan, I.,
and Dang, H. T. (2013). Semeval-2013 task 7: The
joint student response analysis and 8th recognizing
textual entailment challenge. Technical report, DTIC
Document.
Erk, K. and Pad
´
o, S. (2009). Paraphrase assessment in
structured vector space: Exploring parameters and
datasets. In Proceedings of the Workshop on Geomet-
rical Models of Natural Language Semantics, pages
57–65. Association for Computational Linguistics.
Fellbaum, C. (1998). WordNet. Wiley Online Library.
Gupta, A., Kaur, M., Singh, A., Goel, A., and Mirkin, S.
(2014). Text summarization through entailment-based
minimum vertex cover. Lexical and Computational
Semantics (* SEM 2014), page 75.
Harmeling, S. (2009). Inferring textual entailment with a
probabilistically sound calculus. Natural Language
Engineering, 15(04):459–477.
Kouylekov, M. and Magnini, B. (2005). Recognizing tex-
tual entailment with tree edit distance. In Proceedings
of the PASCAL RTE Challenge, pages 17–20.
Kouylekov, M. and Magnini, B. (2006). Combining lex-
ical resources with tree edit distance for recogniz-
ing textual entailment. In Machine Learning Chal-
lenges. Evaluating Predictive Uncertainty, Visual Ob-
ject Classification, and Recognising Tectual Entail-
ment, pages 217–230. Springer.
Levy, O., Zesch, T., Dagan, I., and Gurevych, I. (2013).
Recognizing partial textual entailment. In ACL (2),
pages 451–455.
Malakasiotis, P. and Androutsopoulos, I. (2007). Learn-
ing textual entailment using svms and string similarity
measures. In Proceedings of the ACL-PASCAL Work-
shop on Textual Entailment and Paraphrasing, pages
42–47. Association for Computational Linguistics.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013a).
Efficient estimation of word representations in vector
space. arXiv preprint arXiv:1301.3781.
Mikolov, T., Le, Q. V., and Sutskever, I. (2013b). Exploiting
similarities among languages for machine translation.
arXiv preprint arXiv:1309.4168.
Mikolov, T., Yih, W.-t., and Zweig, G. (2013c). Linguistic
regularities in continuous space word representations.
In HLT-NAACL, pages 746–751.
Mi
˜
narro-Gim
´
enez, J. A., Mar
´
ın-Alonso, O., and Samwald,
M. (2015). Applying deep learning techniques on
medical corpora from the world wide web: a pro-
totypical system and evaluation. arXiv preprint
arXiv:1502.03682.
Moldovan, D. I. and Rus, V. (2001). Logic form transfor-
mation of wordnet and its applicability to question an-
swering. In Proceedings of the 39th Annual Meeting
on Association for Computational Linguistics, pages
402–409. Association for Computational Linguistics.
Nev
ˇ
e
ˇ
rilov
´
a, Z. (2014a). Paraphrase and textual entailment
generation. In Text, Speech and Dialogue, pages 293–
300. Springer.
Nev
ˇ
e
ˇ
rilov
´
a, Z. (2014b). Paraphrase and Textual Entailment
Generation in Czech [online]. PhD thesis, Faculty of
Informatics, Masaryk University Brno.
Nielsen, R. D., Ward, W., and Martin, J. H. (2009). Recog-
nizing entailment in intelligent tutoring systems. Nat-
ural Language Engineering, 15(04):479–501.
Nielsen, R. D., Ward, W., Martin, J. H., and Palmer, M.
(2008). Annotating students understanding of science
concepts. In In Proc. LREC.
Rehurek, R. (2008). Semantic-based plagiarism detection
[online]. Ph.d. thesis proposal, Faculty of Informatics,
Masaryk University Brno.
Resnik, P. (1995). Using information content to evaluate se-
mantic similarity in a taxonomy. arXiv preprint cmp-
lg/9511007.
Rudrapal, D. and Bhattacharya, B. (2014). Recognition of
partial textual entailment for bengali tweets. Social-
India 2014, 2014:29.
Stern, A. and Dagan, I. (2012). Biutee: A modular open-
source system for recognizing textual entailment. In
Proceedings of the ACL 2012 System Demonstrations,
pages 73–78. Association for Computational Linguis-
tics.
Computing Semantic Textual Similarity based on Partial Textual Entailment
11